
dbnomics for gretl

Allin Cottrell Jack Lucchetti

June 26, 2022

1 Introduction

This package offers an interface to dbnomics for gretl. For anyone who hasn’t yet caught on, dbnomics
makes available, in a uniform manner, a huge number of macroeconomic data series drawn from many
sources around the world—a truly admirable service!

The dbnomics website can be found at https://db.nomics.world/; interested users are encouraged to
visit the site to get a better sense of what’s available. The exact mechanisms whereby dbnomics makes
data available are still under development so some changes can be expected in future. We will endeavor
to keep our package up to date and will push out updates with gretl snapshots as required.

There are three main layers to the dbnomics “space,” as follows:

• Providers: the various statistical agencies that are the primary sources of the data. As of this
writing 62 providers are included, from the African Development Group to the WTO.

• Datasets: sets of related series offered by a given provider. Over 20,000 datasets are available.

• Series: specific time series such as the Bulgarian unemployment rate. Hundreds of millions of series
are available.

A specific series in dbnomics is identified by a triplet of the form provider/dataset/series, for example

ECB/IRS/M.IT.L.L40.CI.0000.EUR.N.Z

Here the provider is ECB (the European Central Bank); the dataset is IRS (interest rate statistics); and
the particular series is “M.IT.L.L40.CI.0000.EUR.N.Z,” an Italian 10-year interest rate.

This package provides means of downloading a specific series if you know its identifying triplet, and
also means of navigating the dbnomics space. There are three ways of accessing the functionality of the
package:

• Via the gretl commands open and data, as with native gretl databases.

• By means of the gretl GUI.

• By calling the public functions of the package yourself, in command-line or scripting mode.

The following three sections expand on these methods in turn.

2 The open and data commands

To exploit this method you need to know the identifying triplet(s) for the series you want. Given that,
you can initiate dbnomics access via the command

open dbnomics

1

https://db.nomics.world/

From this point the data command will target dbnomics data until you “open” some other data source.
So, for example, you could download the Italian 10-year interest rate mentioned above in this way:

data ECB/IRS/M.IT.L.L40.CI.0000.EUR.N.Z

Ah, but what about the name of the series within gretl? The full triplet is obviously not acceptable as
a gretl series-name, and even its third component won’t work since gretl identifiers cannot contain the
dot character. What happens by default is that gretl takes the third portion of the triplet and squeezes
out any illegal characters. In the case above this would give a name of MITLL40CI0000EURNZ—not very
nice-looking. However, you can take charge of the naming of the imported series yourself, using the
--name option to the data command, as in

data ECB/IRS/M.IT.L.L40.CI.0000.EUR.N.Z --name="IT_10yr"

In this case the series will be known to gretl as IT_10yr. Note that when you import a series from
dbnomics its descriptive “label” starts with the full triplet so you won’t lose that information of record,
regardless of the naming of the series.

Note that the data command takes care automatically of several details, such as for example matching
date or adjusting for different periodicities. For example, the following code snippet will create an empty
monthly dataset and retrieve from dbnomics the monthly index of industrial production for Portugal, as
reported by the “International Financial Statistics” dataset by the International Monetary Fund.

nulldata 220

setobs 12 2007:1

open dbnomics

data IMF/IFS/M.PT.AIP_IX --name="pt_ip"

The nulldata and setobs commands used in the above script will generate a dataset that starts in
January 2007 and ends in April 2018, whereas the downloaded series (at the time of this writing) starts
in January 1955 and ends in December 2017, but the data command puts the numbers in the right place.
As for periodicities, suppose we import the same series into a quarterly dataset, such as AWM17:

open AWM17.gdt --quiet

open dbnomics

data IMF/IFS/M.PT.AIP_IX --name="pt_ip"

In this case, the series is also compacted to a lower frequency by averaging, which is the default behavior
of the data command (see the Gretl User’s Guide for more details).

3 dbnomics via the gretl GUI

GUI access to dbnomics is provided in two places (see Figure 1):

• Via the Databases item under the File menu in the gretl main window.

• From the gretl databases window (opened by the database icon on the toolbar at the foot of the
main window): click the “DB” icon on the toolbar in this window.

In both cases you get a little sub-menu with entries “Browse” and “Specific series.” The latter entry takes
you to a dialog box in which you can enter a series triplet (see section 2). The Browse entry takes you to a
window which displays the available dbnomics providers: their codes and their descriptions (see Figure 2).
From here you have two options:

• Select a provider and double-click to browse the datasets it supplies.

2

Figure 1: DB.NOMICS access via the File menu or the databases button (circled)

Figure 2: Listing of DB.NOMICS providers

3

• In the search box in the top panel of the window, enter a string and search all providers for datasets
that match your specification.1

In each case a dbnomics datasets window will open. With some providers or searches more datasets will
be found than can comfortably be displayed at once. In that case the toolbar includes buttons that let
you page forward or back through the listing; you should also get a status message at the foot of the
window indicating the current position in the listing.

From a datasets window two more steps are available:

• Double-click on a dataset to open a window showing the series it contains (or one “page” of its full
list of series if there are too many).

• In a window showing dbnomics series, double-click to activate a particular series. This will give you
detailed information on the series and allow you to display its values, create a time-series plot, or
add the series to your gretl dataset.

To summarize, there are three layers to gretl’s GUI representation of the dbnomics space:

1. The providers window (with global search facility)

2. Datasets window (for a given provider, or via search)

3. Series window (for a given dataset)

4 Public functions

The package contains several public functions which both subserve the modes of access described in
sections 2 and 3, and can be called directly by the user.

At this point we just offer an “as is” listing of the signatures of these functions with brief commentary.
The finer points are subject to change; we can expand on them later if there’s sufficient interest.

However, the general guiding principle is that, when you download some information from dbnomics, be it
a single series or more complex objects, the metadata are going to be as important as the data themselves.
Therefore, in most cases what you get from the functions provided by this package are bundles, or arrays
of bundles.

For example, the dbnomics_get_series function takes as its first mandatory argument a series code and
returns a bundle containing both the data and the metadata: take the series Q.AU.C.A.M.USD.A, from
the “long series on total credit” dataset, itself from the Bank for International Settlements. The code for
the dataset is BIS/CNFS. Therefore, this code snippet

b = dbnomics_get_series("BIS/CNFS/Q.AU.C.A.M.USD.A")

print b

produces the following:

bundle b, created by dbnomics:

frequency = 4

series_name (string, 127 bytes)

dimensions (bundle)

dataset_name = long series on total credit

period = array of strings, length 120

error = 0

series_code = Q.AU.C.A.M.USD.A

indexed_at = 2018-12-13T17:38:15.031Z

1If you wish to use this facility to find a string in the providers window itself, first select “this window” to the right of
the search box, the default being “all DB.NOMICS” as shown in Figure 2.

4

dataset_code = CNFS

provider_code = BIS

has_data = 1

period_start_day = array of strings, length 312

T = 120

@frequency = quarterly

value (matrix: 120 x 1)

The actual data are stored as a column vector, under the key value; however, there is much more
information available to you: for example, the frequency key equals 4, thus indicating that the data are
quarterly, and so on. If you want to have this information printed in a more readable way, you’ll want to
use the dbnomics_bundle_print function, that yields (long lines broken for readability):

Series: Q.AU.C.A.M.USD.A

Provider: BIS

Dataset: CNFS (long series on total credit)

Identifier: BIS/CNFS/Q.AU.C.A.M.USD.A

Name: Quarterly - Australia - Non financial sector - Adjusted for

breaks - Market value - US Dollar - Adjusted for breaks

Dimensions:

Frequency: ’Q’ (Quarterly)

Borrowers’ country: ’AU’ (Australia)

Borrowing sector: ’C’ (Non financial sector)

Lending sector: ’A’ (Adjusted for breaks)

Valuation: ’M’ (Market value)

Type of adjustment: ’A’ (Adjusted for breaks)

Unit type: ’USD’ (US Dollar)

pd = 4; 120 observations, 1988-Q2 - 2018-Q1

Some functions can be used for retrieving multiple series at once; therefore, what they return is an array
of bundles. The following example fetches two series for two countries from the “AMECO” dataset as
provided by the European Central Bank.

set verbose off

include dbnomics.gfn

bundle spec = null

spec.AME_ITEM = defarray("UBLGE", "OVGD")

spec.AME_REF_AREA = defarray("AUT", "BEL")

bs = dbnomics_get_multiple("ECB", "AME", 20, 0, spec)

dbnomics_bundles_print(bs)

Once the series have been downloaded, a short description of the resulting array of bundles is obtained by
the dbnomics_bundles_print (note the plural) function, and this is the output (with long lines broken
for readability, again):

Contents of bs:

Provider Code Description

1: ECB/AME A_AUT_1_0_0_0_OVGD Austria - Gross domestic product at 2...

61 observations (pd = 1) [1960:2020]

2: ECB/AME A_AUT_1_0_319_0_UBLGE Austria - Net lending (+) or net borr...

26 observations (pd = 1) [1995:2020]

3: ECB/AME A_BEL_1_0_0_0_OVGD Belgium - Gross domestic product at 2...

61 observations (pd = 1) [1960:2020]

4: ECB/AME A_BEL_1_0_319_0_UBLGE Belgium - Net lending (+) or net borr...

26 observations (pd = 1) [1995:2020]

5

Note that this package contains several test scripts that exemplify calls to the functions listed below; this
can be found in the examples subdirectory of the installation directory. Likely locations for this are as
follows (though the paths may differ by locale and otherwise):

Linux /usr/share/gretl/functions/dbnomics

Windows C:\Program Files\gretl\functions\dbnomics

Mac /Applications/Gretl.app/Contents/Resources/share/gretl/functions/dbnomics

List of public functions (in alphabetical order)

scalar dbnomics_bundle_get_data (const bundle b,

series *x,

bool verbose[0])

Given a bundle obtained by dbnomics_get_series, writes the actual data values (and description) into
the series x, which must exist already and be given in “pointer” form. Returns zero on success, non-zero
on error.

example

bundle b = dbnomics_get_series("ECB/IRS/M.IT.L.L40.CI.0000.EUR.N.Z")

series IT_10yr = NA

dbnomics_bundle_get_data(b, &IT_10yr)

void dbnomics_bundle_print (const bundle b,

bool print_data[0])

Displays the content of a bundle obtained by dbnomics_get_series. Give a non-zero value for the second
argument to print the actual values, otherwise just the metadata is shown.

void dbnomics_bundles_print (const bundles bs)

Displays a concise description of the series contained in an array of bundles, such as the ones you get
from function like dbnomics_get_multiple. For a more detailed printout of the individual bundles, use
dbnomics_bundle_print.

list dbnomics_bundles_to_list(bundles bs, string key[null])

Creates a list of series from an array of bundles containing series data, as returned by functions such as
dbnomics_get_multiple. By default the names of the series will be constructed automatically but the
second, optional string argument can be used to impose a chosen naming scheme: for each bundle, if it
contains a string value under the specified key, that string will be used as the name of the corresponding
series.

bundle dbnomics_category_tree (const string provider,

bool verbose[0])

6

Returns a bundle containing a representation of the “category tree” for the specified provider. For some
providers this tree just amounts to a list of datasets but for others it is a hierarchy in which related
datasets are grouped under one or more levels of headings. Each bundle in the tree will have members
code and name; those that represent groups of datasets rather then datasets proper will in addition have
a children member.

example

bundle b = dbnomics_category_tree("BLS")

print b --tree

bundle dbnomics_dsets_for_provider (const string provider,

bool verbose[0])

Returns a bundle containing basic information on the datasets associated with a given provider, namely
two arrays of strings holding the codes and names of the datasets respectively.

example

bundle b = dbnomics_dsets_for_provider("AMECO")

series dbnomics_fetch (const string datacode,

bool verbose[0])

This is just a convenience wrapper for dbnomics_get_series followed by dbnomics_bundle_get_data.

bundles dbnomics_get_cart (const string URL)

This is a convenience function that you can use to select the series you want via the“cart” facility provided
by the DB.nomics website. After choosing the series you want, you have to select the “Copy API link”
entry in the “Download” menu.

At that point, you can just paste the result into a gretl string, and use that as the argument of this
function. See the file get_cart_example.inp for an example.

bundles dbnomics_get_dataset_content (const string provider,

const string dset,

int limit[0::100],

int offset[0])

Returns an array of bundles each containing information on a series contained in the dataset specified
by the provider and dset codes. The limit and offset arguments allow “paging”: retrieve so many
results, starting at a given offset into the full listing.

example

bundles B = dbnomics_get_dataset_content("ECB", "IRS", 50, 100)

7

bundles dbnomics_get_dataset_dimensions (const string provider,

const string dset,

bool verbose[0])

Returns an array of bundles, with all the “dimensions” for a given dataset, and prints it out if the
verbose argument is nonzero. The dimensions typically contain lists of the different periodicities of the
series contained in the datasets, the geographical units they refer to, and so on.

Therefore, each resulting bundle will have a key called code, which identifies the dimension, and an array
of bundles called values, describing each dimension via the keys code and label. For example, the
following code

set verbose off

include dbnomics.gfn

dims = dbnomics_get_dataset_dimensions("ECB", "AME")

code = dims[2].code

vals = dims[2].values

printf "%s\n\n", code

loop i = 1..4 --quiet

printf "%s - %s\n", vals[i].code, vals[i].label

endloop

returns

AME_REF_AREA

AUT - Austria

BEL - Belgium

BGR - Bulgaria

HRV - Croatia

Note: This may not work with some providers.

bundles dbnomics_providers (bool verbose[0])

Returns an array of bundles, one per provider. Each bundle contains basic info about the provider,
notably its dbnomics code under the code key and its full name under the name key.

bundles dbnomics_get_multiple (const string provider,

const string dset,

int limit[0::50],

int offset[0],

bundle spec[null])

Returns an array of bundles (defaulting to a maximum of 50), each of which contains information (data
+ metadata) on a series from dataset provider/dset.

The bundle spec, if present, can be used to limit the query to certain dimensions. There are two ways
to to this:

• you may put a mask key into the bundle, which contains a string specially tailored to the
specifics of that particular dataset. For example, the string “Q.FR+DE+BE.PCPIFBT IX” in
the context of the IMF/CPI dataset, corresponds to the quarterly price indices for “Alcoholic
Beverages, Tobacco, and Narcotics” in France, Germany and Belgium (see the example file
get_multiple_example_via_mask);

8

• alternatively, you may put into the spec bundle one or more string array with the “dimensions”
for that dataset (see the example file get_multiple_example). In order to find the dimensions
available for a given dataset, use the function dbnomics_get_dataset_dimensions().

bundle dbnomics_get_series (const string datacode,

bool verbose[0])

Returns a bundle containing information on the series specified by datacode, which must be a dbnomics
triplet as described above.

example

bundle b = dbnomics_get_series("ECB/IRS/M.IT.L.L40.CI.0000.EUR.N.Z")

The verbose switch, if true, prints out the actual URL that the function sends to the dbnomics website,
and can be used for debugging purposes.

bundles dbnomics_search (const string key,

const string dset[null],

int limit[0::100],

int offset[0],

bool verbose[0])

The behavior of this function is dictated by the second parameter dset.

If dset is null, or an empty string, the function returns an array of bundles, each holding information
on a dataset which matches (in some way or other) the key string. If, conversely, dset contains a valid
dataset representation (eg “AMECO/ZUTN”), then the query will be limited to that particular dataset, and
the bundles returned will contain the series matching the query. See section 5 below for further details.

The limit and offset argument should in principle work to allow paging but as of this writing the
offset argument has no effect due to a dbnomics bug.

example

bundles B = dbnomics_search("interest rates", null, 50)

5 Searching dbnomics

Given the vast size of the dbnomics space, it’s important to have effective search tools. This is work in
progress, but in this section we illustrate the current state of play. The example below shows a two-stage
search. We first search for relevant datasets across the whole population of providers then we home in
on a particular dataset and search for relevant series, in each case requesting verbose results.

set verbose off

include dbnomics.gfn

target of search

key = "remittances Iraq"

search all providers for up to 10 relevant databases

bundles generic = dbnomics_search(key, null, 10, 0, 1)

search the "WDI" dataset of the World Bank for up to

9

10 relevant series

dataset_code = "WB/WDI"

bundles specific = dbnomics_search(key, dataset_code, 10, 0, 1)

The example produces the following output (long lines broken for readability):

Datasets containing "remittances Iraq" (1-5 of 5):

1: Eurostat.bop_rem6 (42 series)

2: WB.WDI (5 series)

3: IMF.BOP (54 series)

4: CEPII.BOP (54 series)

5: ECB.BOP (54 series)

Dataset WB/WDI, matching series 1-5 of 5:

BM.TRF.PWKR.CD.DT-IQ: Personal remittances, paid (current US$) -- Iraq

BX.TRF.PWKR.CD.DT-IQ: Personal remittances, received (current US$) -- Iraq

BX.TRF.PWKR.DT.GD.ZS-IQ: Personal remittances, received (% of GDP) -- Iraq

SI.RMT.COST.IB.ZS-IQ: Average transaction cost of sending remittances

to a specific country (%) -- Iraq

SI.RMT.COST.OB.ZS-IQ: Average transaction cost of sending remittances

from a specific country (%) -- Iraq

The same search facilities are also available through the GUI: if you go back to Figure 2, you will notice
a search text box at the top. By default, any term you insert will trigger a search for that term on the
whole dbnomics space, like the dbnomics_search function with a null second argument. If you want to
restrict the search to a particular dataset instead, you will have to “click to” that particular data set and
use the search text box there, like in Figure 3.

Figure 3: Search within a particular dataset

10

6 Change log

We show below a brief history of changes in the gretl dbnomics package. Details can be found at https:
//sourceforge.net/p/gretl/git/ci/master/tree/addons/dbnomics/.

2022-06-26 ensure deletion of temporary data files

2022-01-12 update for absence of series_name

2021-10-21 fix handling of quarterly data with gaps

2021-03-29 cut out waste of time downloading metadata

2021-03-10 update for presence of metadata switch in API

2021-01-06 update for absence of complete_missing_periods

2020-10-22 update for absence of dimensions_labels in many datasets

2020-02-27 add dbnomics_printer function

2020-01-25 add the commit_missing_periods flag to our dbnomics re-
quests to ensure we get a full data calendar

2019-07-01 more work on handling nested JSON arrays

2019-06-26 work around nested arrays in dbnomics “dimensions” info

2019-03-03 another fix in light of API switch

2019-02-28 fix minor breakage due to API switch

2019-01-17 update dbnomics URL

2018-12-23 switch to version 22 of dbnomics API

2018-11-28 support downloading of multiple series bundles

2018-06-27 initial entry as gretl addon

11

https://sourceforge.net/p/gretl/git/ci/master/tree/addons/dbnomics/
https://sourceforge.net/p/gretl/git/ci/master/tree/addons/dbnomics/

	1 Introduction
	2 The open and data commands
	3 dbnomics via the gretl GUI
	4 Public functions
	List of public functions (in alphabetical order)

	5 Searching dbnomics
	6 Change log

