IT++ Logo
Classes | Namespaces | Macros
fastica.h File Reference

Definition of FastICA (Independent Component Analysis) for IT++. More...

#include <itpp/base/mat.h>
#include <itpp/itexports.h>

Go to the source code of this file.

Classes

class  itpp::Fast_ICA
 Fast_ICA Fast Independent Component Analysis (Fast ICA) More...
 

Namespaces

namespace  itpp
 itpp namespace
 

Macros

#define FICA_APPROACH_DEFL   2
 Use deflation approach : compute IC one-by-one in a Gram-Schmidt-like fashion.
 
#define FICA_APPROACH_SYMM   1
 Use symmetric approach : compute all ICs at a time.
 
#define FICA_NONLIN_POW3   10
 Use x^3 non-linearity.
 
#define FICA_NONLIN_TANH   20
 Use tanh(x) non-linearity.
 
#define FICA_NONLIN_GAUSS   30
 Use Gaussian non-linearity.
 
#define FICA_NONLIN_SKEW   40
 Use skew non-linearity.
 
#define FICA_INIT_RAND   0
 Set random start for Fast_ICA.
 
#define FICA_INIT_GUESS   1
 Set predefined start for Fast_ICA.
 
#define FICA_TOL   1e-9
 Eigenvalues of the covariance matrix lower than FICA_TOL are discarded for analysis.
 

Detailed Description

Definition of FastICA (Independent Component Analysis) for IT++.

Author
Francois Cayre and Teddy Furon

Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)

This file is part of IT++ - a C++ library of mathematical, signal processing, speech processing, and communications classes and functions.

IT++ is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

IT++ is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with IT++. If not, see http://www.gnu.org/licenses/.


This is IT++ implementation of the original Matlab package FastICA.

This code is Copyright (C) 2004 by: Francois CAYRE and Teddy FURON TEMICS Project INRIA/Rennes (IRISA) Campus Universitaire de Beaulieu 35042 RENNES cedex FRANCE

Email: first.nosp@m.name.nosp@m..last.nosp@m.name.nosp@m.@iris.nosp@m.a.fr

Matlab package is Copyright (C) 1998 by: Jarmo HURRI, Hugo GAVERT, Jaakko SARELA and Aapo HYVARINEN Laboratory of Information and Computer Science Helsinki University of Technology

URL: http://www.cis.hut.fi/projects/ica/fastica/about.shtml

If you use results given by this FastICA software in an article for a scientific journal, conference proceedings or similar, please include the following original reference in the bibliography:

A. Hyvarinen, Fast and Robust Fixed-Point Algorithms for Independent Component Analysis, IEEE Transactions on Neural Networks 10(3):626-634, 1999

Differences with the original Matlab implementation:

Definition in file fastica.h.

Macro Definition Documentation

◆ FICA_APPROACH_DEFL

#define FICA_APPROACH_DEFL   2

Use deflation approach : compute IC one-by-one in a Gram-Schmidt-like fashion.

Definition at line 69 of file fastica.h.

◆ FICA_APPROACH_SYMM

#define FICA_APPROACH_SYMM   1

Use symmetric approach : compute all ICs at a time.

Definition at line 71 of file fastica.h.

◆ FICA_NONLIN_POW3

#define FICA_NONLIN_POW3   10

Use x^3 non-linearity.

Definition at line 74 of file fastica.h.

◆ FICA_NONLIN_TANH

#define FICA_NONLIN_TANH   20

Use tanh(x) non-linearity.

Definition at line 76 of file fastica.h.

◆ FICA_NONLIN_GAUSS

#define FICA_NONLIN_GAUSS   30

Use Gaussian non-linearity.

Definition at line 78 of file fastica.h.

◆ FICA_NONLIN_SKEW

#define FICA_NONLIN_SKEW   40

Use skew non-linearity.

Definition at line 80 of file fastica.h.

◆ FICA_INIT_RAND

#define FICA_INIT_RAND   0

Set random start for Fast_ICA.

Definition at line 83 of file fastica.h.

◆ FICA_INIT_GUESS

#define FICA_INIT_GUESS   1

Set predefined start for Fast_ICA.

Definition at line 85 of file fastica.h.

◆ FICA_TOL

#define FICA_TOL   1e-9

Eigenvalues of the covariance matrix lower than FICA_TOL are discarded for analysis.

Definition at line 88 of file fastica.h.

SourceForge Logo

Generated on Mon Jun 10 2024 11:49:28 for IT++ by Doxygen 1.9.8