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Summary
Stochastic volatility (SV) models are often used to model financial returns that exhibit
time-varying and autocorrelated variance. The first SV model was introduced by Tay-
lor (1982) and models the logarithm of the variance as a latent autoregressive process
of order one. Parameter estimation of stochastic volatility models can be challenging
and a variety of methods have been proposed, such as simulated likelihood (Liesenfeld
and Richard 2006), quasi-maximum likelihood (Harvey, Ruiz, and Shephard 1994) and
Markov Chain Monte Carlo methods (MCMC) (Pitt and Shephard 1999; Kastner 2016).
stochvolTMB estimates the parameters using maximum likelihood, similar to Skaug and
Yu (2014). The latent variables are integrated out using Laplace approximation. The
models are implemented in C++ using the R-package (R Core Team 2019) TMB (Kristensen
et al. 2016) for fast and efficient estimation. TMB utilizes the Eigen library (Guennebaud,
Jacob, and others 2010) for numerical linear algebra and CppAD (Bell 2005) for automatic
differentiation of the negative log-likelihood.

Statement of need
The stochvolTMB R-package makes it easy for users to do inference, plotting and fore-
casting of volatility. The R-package stochvol (Kastner 2016) also performs inference
for stochastic volatility models, but differs from stochvolTMB since it performs Bayesian
inference using MCMC and not maximum likelihood. By using optimization instead of
simulations one can obtain substantial speed up depending on the data, model, number
of observations and number of MCMC samples.

Implementation
stochvolTMB implements stochastic volatility models of the form

yt = σye
ht/2ϵt, t = 1, . . . , T,

ht+1 = ϕht + σhηt, t = 1, . . . , T − 1,

ηt
iid∼ N (0, 1),

ϵt
iid∼ F,

h1 ∼ N
(
0,

σh√
(1− ϕ2)

)
,

(1)

where yt is the observed log return for day t, ht is the logarithm of the conditional
variance of day t and is modelled as an AR(1) process, θ = (ϕ, σy, σh) is a vector of the
fixed parameters and F denotes the distribution of ϵt. Four distributions are implemented
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for ϵt: (1) The standard Gaussian distribution; (2) The t-distribution with ν degrees of
freedom; (3) The skew-Gaussian distribution with skewness parameter α; and (4) The
leverage model where (ϵt, ηt) are both standard Gaussian with correlation coefficient ρ.
The last three distributions add an additional fixed parameter to θ. stochvolTMB also
supports generic functions such as plot, summary, predict and AIC. The plotting is
implemented using ggplot2 (Wickham 2016) and data processing utilizes the R-package
data.table (Dowle and Srinivasan 2019).

The parameter estimation is done in an iterative two-step procedure: (1) Optimize the
joint negative log-likelihood with respect to the latent log-volatility h = (h1, . . . , hT )
holding θ fixed, and (2) Optimize the Laplace approximation of the joint negative log-
likelihood w.r.t θ holding h fixed. This procedure is iterated until convergence. Standard
deviations for the log-volatility and the fixed parameters are obtained using a generalized
delta-method (Kristensen et al. 2016).

Example
As an example we compare the different models on log returns for the S&P index from
2005 to 2018:
library(stochvolTMB)
data(spy)
gaussian = estimate_parameters(spy$log_return, model = "gaussian")
t_dist = estimate_parameters(spy$log_return, model = "t")
skew_gaussian = estimate_parameters(spy$log_return, model = "skew_gaussian")
leverage = estimate_parameters(spy$log_return, model = "leverage")

To compare competing models we can use model selection tools such as AIC (Akaike
(1998)):
AIC(gaussian,

t_dist,
skew_gaussian,
leverage)

## df AIC
## gaussian 3 -23430.57
## t_dist 4 -23451.69
## skew_gaussian 4 -23440.87
## leverage 4 -23608.85

The leverage model is preferred in this example. Notice that the Gaussian model performs
the worst and shows the importance of having more flexible distributions, even after
controlling for the volatility. We can plot the estimated log-volatility with 95% confidence
interval
plot(leverage, plot_log = FALSE, dates = spy$date)
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Future volatility can be simulated from the estimated model. Parameter uncertainty of
the fixed effects is by default included and is obtained by simulating parameter values from
the asymptotic distribution, i.e. a multivariate Gaussian distribution using the observed
Fisher information matrix (inverse Hessian of the negative log-likelihood) as the covariance
matrix.
set.seed(123)
# plot predicted volatility with 95% confidence interval
plot(leverage, plot_log = FALSE, forecast = 50, dates = spy$date) +

ggplot2::xlim(c(tail(spy$date, 1) - 150, tail(spy$date, 1) + 50))
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prediction = predict(leverage, steps = 5)
summary(prediction, quantiles = c(0.025, 0.975))

## $y
## time quantile_0.025 quantile_0.975 mean
## 1: 1 -0.03663416 0.03752972 1.102221e-04
## 2: 2 -0.03666747 0.03596978 -2.848990e-05
## 3: 3 -0.03602083 0.03644617 8.530205e-05
## 4: 4 -0.03780105 0.03685205 -4.208489e-05
## 5: 5 -0.03651973 0.03629376 7.000557e-05
##
## $h
## time quantile_0.025 quantile_0.975 mean
## 1: 1 0.404072293 2.487583 1.442077
## 2: 2 0.268454334 2.533374 1.394570
## 3: 3 0.121924793 2.589508 1.347677
## 4: 4 -0.009923701 2.610516 1.304630
## 5: 5 -0.134679921 2.654572 1.259413
##
## $h_exp
## time quantile_0.025 quantile_0.975 mean
## 1: 1 0.010053253 0.02915122 0.01776023
## 2: 2 0.009335712 0.02994720 0.01749173
## 3: 3 0.008764370 0.03068317 0.01724951
## 4: 4 0.008291696 0.03101963 0.01698012
## 5: 5 0.007747370 0.03151893 0.01668318
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