LLAMA: Leveraging Learning to Automatically
Manage Algorithms

Lars Kotthoff

Abstract

Algorithm portfolio and selection approaches have achieved remark-
able improvements over single solvers. However, the implementation of
such systems is often highly customised and specific to the problem do-
main. This makes it difficult for researchers to explore different techniques
for their specific problems. We present LLAMA, a modular and extens-
ible toolkit implemented as an R package that facilitates the exploration
of a range of different portfolio techniques on any problem domain. It
implements the algorithm selection approaches most commonly used in
the literature and leverages the extensive library of machine learning al-
gorithms and techniques in R. We describe the current capabilities and
limitations of the toolkit and illustrate its usage on a set of example SAT
problems.

This document corresponds to LLAMA version 0.9.1.

Quick start

So you know about algorithm portfolios and selection and just want to get
started. Here we go. In your R shell, type

install.packages("1llama™)
library(llama)

to install and load LLAMA. We’re going to assume that you have two input
CSV files for your data — features and times. The rows designate problem
instances and the columns feature and solver names. All files must have an 'ID’
column that allows to link them. Load them into the data structure required
by LLAMA as follows.

data = input(read.csv("features.csv"), read.csv("times.csv"))
You can also use the SAT solver data that comes with LLAMA by running

data(satsolvers)
data = satsolvers

Now partition the entire set of instances into training and test sets for cross-
validation.

folds = cvFolds(data)

This will give you 10 folds for cross-validation. Now we’re ready to train our
first model. To do that, we’ll need some machine learning algorithms — we’re
going to use a random forest classifier. Now train a simple classification model
that predicts the best algorithm.

model = classify(makeLearner("classif.randomForest"),
folds)

Great! Now let’s see how well this model is doing and compare its perform-
ance to the virtual best solver (VBS) and the single best solver in terms of
average misclassification penalty.

mean(misclassificationPenalties(folds, model))

[1] 73.31597
mean(misclassificationPenalties(data, vbs))

[1]1 ©

mean(misclassificationPenalties(data, singleBest))
[1] 122.3186

While we are quite far off the virtual best, our classifier beats the single best
algorithm! Not bad for a model trained in a single line of code.

You can use any other classification algorithms instead of randomForest of
course. You can also train regression or cluster models, use different train/test
splits or preprocess the data by selecting the most important features. More
details in the on-line documentation, or just continue reading for an in-depth
tour of LLAMA.

Contents
1 Background

2 Anatomy of LLAMA
2.1 Implementation

3 LLAMA for domestic use

3.1 Imstalling LLAMA
3.2 Readingdata oL

3.2.1 Algorithm Selection Benchmark Library

3.2.2 Exampledata o L.
3.3 Slicing and dicing the data
3.4 Training and evaluating models
3.5 Other available model types

4 Advanced functionality

4.1 Processing the input data

4.1.1 Normalising feature values

4.1.2 Imputing censored runtimes
4.2 Portfolio analysis
4.3 Emnsembles and stacking Lo
4.4 Parallel execution
4.5 Instance weights L oL oL oL

5 Visualising the data
5.1 LLAMA’s plotting functions
5.2 Other ways of plotting data

6 Case study: SATzilla
6.1 Presolver
6.2 Prediction of satisfiability 0L
6.3 Prediction of feature computation time
6.4 Putting it all together o oL

7 The further domestication of LLAMA

[0 N

NeRNoREN BES [«

10
13

15
15
16
16
17
18
21
21

22
22
24

32
34
34
35
36

37

1 Background

Throughout this document, we will assume that the reader is somewhat fa-
miliar with algorithm portfolios, algorithm selection, and combinatorial search
problems. In this section, some of the background is explained and pointers to
additional materials given. Readers familiar with the matter may skip ahead to
the next section.

We also assume a basic familiarity with how machine learning works. Read-
ers new to this area can find background material in a variety of text books,
e.g. [2,17,22].

An algorithm portfolio [6,8] is a collection of state of the art solvers that are
all capable of solving the same kind of problem. The rationale of using more
than one algorithm or solver for a set of problems is that no single algorithm
will be the best for all of these problems. This is known as the no free lunch
theorem [24]. If more than one solver is available, we can (at least in theory)
choose the best one for each particular problem, thus achieving superior overall
performance. The idea of algorithm portfolios was inspired by portfolios in
Economics, where a total investment is distributed over multiple securities to
minimise the risk.

Many contemporary solvers for artificial intelligence problems have com-
plementing strengths and weaknesses. On a set of problems where one solver
exhibits bad performance, another will excel while the picture may be reversed
on a different set of problems. Algorithm portfolios exploit this by relating the
structure of the problem to solve to the performance of an individual solver or
a set of solvers.

SAT is one of the first areas of artificial intelligence that algorithm portfolios
and algorithm selection techniques have been applied to, and with great success.
The most prominent system is probably SATzilla [27], which has dominated
SAT solver competitions when it was introduced. More recent systems include
ISAC [11], Hydra [26] and 3S [10].

To use an algorithm portfolio for solving problems, a selection mechanism is
required to determine the algorithm to use in the particular case. The concept is
closely related to the Algorithm Selection Problem [20], which is concerned with
identifying the most suitable algorithm for solving a problem. Usually, some
kind of machine learning model is learned to relate the features of a problem
instance to the performance of an algorithm or a portfolio. Problem instance
features can be anything that describes the instance, for example structural
features such as the number of variables in a search problem or probing features
such as the progress made after running a benchmark algorithm for a short
amount of time on the instance.

There are different ways in which such machine learning models can be used.
In the simplest case, a single classification model is trained to predict the best
algorithm, given the features of a problem instance. Alternatively, one regression
model per algorithm can be trained to predict its performance. The performance
predictions can then be used to choose the best algorithm. Another approach is
to cluster the problem instances in the training set, determine the best algorithm

for each cluster and assign new instances to the closest cluster. These and
many more approaches have been used in the literature. LLAMA supports four
fundamentally different approaches and a large number of variations of these
involving ensembles and stacking.

A lot more background information can be found in [15] (even more in the
extended version [13]) and the overview table of the relevant literature at http:
//larskotthoff.github.io/assurvey/.

The main drawback of the systems described in the literature is that they
are highly tailored and customised for the particular problem domain or even
set of problems. On top of that, the implementation may not be available, or
may require an obsolete version of Matlab and the respective author’s special
environment that makes it work. Even though the high-level approach can usu-
ally be applied to other problems, in practice this is almost always very difficult
or even impossible. This makes it very difficult to compare different approaches
and prototype new ideas especially for researchers who are not algorithm port-
folio experts.

This is exactly what LLAMA addresses. Instead of providing a highly-
specialised approach that has been tuned and customised to yield high perform-
ance on a specific data set, LLAMA 1is a framework that provides the build-
ing blocks for automatic portfolio selectors. It supports the most common ap-
proaches to portfolio selection and offers the possibility to combine them into
more sophisticated approaches. It furthermore provides an implementation of
the infrastructure that is required to build, evaluate and apply algorithm port-
folios in practice.

LLAMA is intended to be used by researchers working in the areas of al-
gorithm portfolios, algorithm selection, and algorithm configuration and tuning.
It is not particularly user-friendly or easy to use. It does not offer an industrial-
strength C++ implementation that you can use in a high-performance portfolio
solver. It can be used as a tool for designing such systems, but it will not do all
the required work for you.

2 Anatomy of LLAMA

The main focus of LLAMA is to provide the user with a framework for the
implementation and evaluation of different algorithm selection approaches. It
is mot meant to provide turn-key algorithm portfolio systems that can be used
in competitions or similar settings. While the functionality it provides can
certainly be used to facilitate the creation of such systems, a lot of the technical
details for practical algorithm selection systems are highly domain-specific. The
main audience LLAMA targets are researchers that wish investigate and explore
the performance characteristics of algorithm selection systems in general.

The overall architecture of LLAMA is illustrated in Figure 1. At a high level,
LLAMA takes problem feature and solver performance data as input, processes
it, and produces the algorithm selection model and a characterisation of its
performance as output. There is no explicit support for computing features, as

LLAMA

Algorithm se-
lection model

Features

Data preparation Algorithm selection model Evaluation
Performance = _{ Olssilietion } [PAR score } Model perfor-
data > g_ N mance
=
Normalisation g —{ Regression } { # solved }
o
— O e) —

Figure 1: Overview of the architecture of LLAMA.

there are already many domain-specific systems that do this, e.g. SATzilla. The
provided functionality falls into three main categories.

First, functions for data preparation are provided, such as filtering and nor-
malising the feature data, partitioning the data set for evaluation, and analysing
the contributions of the solvers in the portfolio to its overall performance. Input
data can be read from a variety of sources, e.g. CSV files.

The second category comprises the model-building functionality. This in-
cludes functionality required to facilitate a clean evaluation of the learned mod-
els, i.e. functions to partition into training and testing sets. All the main ap-
proaches used in the literature are represented — one can build models treating
algorithm selection as label classification, regression models that predict the
performance of each solver in the portfolio, clustering models that assign the
best solver to each cluster, and models that predict which solver is faster for each
pair of solvers. All this functionality is available through a unified interface —
changing the type of algorithm selection model requires only a different function
call, changing the type of machine learning used to induce the model requires
only a change of parameter to the model-building function call. Similarly, the
output produced by these functions implements a common interface.

The third category of functionality contains the functions used to evaluate
the learned models. Again, all commonly used evaluation measures, such as
number of instances solved and PAR10 score, are supported. These measures
can be reported for each individual problem instance or as averages.

Of the data preparation functions, any number can be used on a given data
set. One could for example read the data, normalise the feature values, and filter
the irrelevant features. In other cases, just reading the data may be sufficient.
The processed data can then be used to build one or more algorithm selection
models, depending on the requirements of the user. For a given application,
only a single model may be required, while for a performance comparison several
models would be needed. The learned models are then passed to the evaluation
functions. Again it will depend on the application whether computing just one
or several evaluation criteria makes sense.

All functions communicate through a set of common interfaces, which make
it easy to extend the functionality. To implement a new model-building ap-
proach for example, the code to process the input and produce the output can

be reused, and the researcher is free to focus on the actual algorithm, on which
no restrictions are imposed.

2.1 Implementation

LLAMA is implemented as an R package. There are many advantages to this
approach; one of the main ones is that all the functionality available in R can be
used to build algorithm selection models. This is not limited to the functionality
that is implemented in R itself — there are interfaces to many other packages,
such as the well-known Weka machine learning toolkit [7].

The large number of machine learning approaches and algorithms available
in R makes it possible to use LLAMA to quickly evaluate a range of different
techniques for algorithm selection on given data, such as presented in [16]. Be-
ing able to do so is crucial for achieving good performance in practice. LLAMA
requires that machine learning algorithms are available through the mlr pack-
age [1].

3 LLAMA for domestic use

LLAMA is implemented as an R package and can be found at http://cran.
r-project.org/web/packages/1lama/, the development repository is at https:
//bitbucket.org/lkotthoff/1lama. One of the main advantages of the R
package implementation is that all the functionality available in R can be used
to build performance model. This is not limited to the functionality that is
implemented in R itself — there are interfaces to many other packages, such as
the well-known Weka machine learning toolkit [7].

The large number of machine learning approaches and algorithms available
in R makes it possible to use LLAMA to quickly evaluate a range of different
techniques for algorithm selection on given data, such as presented in [16]. Being
able to do so is crucial for achieving good performance in practice.

LLAMA uses the mlr package [1] as an interface to R’s many machine learn-
ing method implementations. The advantage is that a wide range of implement-
ations are supported with a common interface, making it easier for LLAMA to
use them than the vanilla functions. Familiarity with mlr is helpful, but not
required to use LLAMA.

LLAMA provides a number of high-level functions that can be used to create
and evaluate algorithm selection models with just a few lines of code. It is helpful
to be familiar R and its language, although this document does not assume that
you are. You will however need to be somewhat familiar with R to use the more
sophisticated functionalities of LLAMA. There are many books on R, e.g. [3].

All of the functions LLAMA provides are documented in R’s online help
system, usually with examples of how to use it. To access a help page, simply
type ?<name of function>.

3.1 Installing LLAMA

LLAMA is available on CRAN. On a computer connected to the internet, all
you have to do is open an R terminal and type

install.packages("llama")

Alternatively, you can use the graphical package manager your R distribution
provides, or download the package file yourself and install it manually.
Once the package is installed, you can load it with

library(llama)

3.2 Reading data

Let’s start at the beginning — getting your data into LLAMA. It uses a special
data structure that contains, besides the actual performance and feature data,
meta data about which algorithm was the best in which case, how to extract
feature and performance values, and other information that is required by the
various functions that operate on it. Throughout this document, we will talk
about the “performance” of an algorithm — this will usually be its runtime, but
can be other things such as the quality of an obtained solution. LLAMA places
no restrictions on what “performance” means.

LLAMA’s input function requires a particular data format, but places no
restrictions on where the data comes from. Its first argument is a data frame
that contains the features for each problem instance. Each row in the data
frame designates a different problem instance, each column holds the values for
a different feature. The second argument to input is a similar data frame that
contains performance information for the algorithms in the portfolio. Both data
frames should have a column that holds the ID of the problem instance such
that the two data frames can be merged. In fact, LLAMA assumes that any
columns that are present in both data frames can be used to merge them.

The third (and optional) argument is a data frame that tells LLAMA whether
the run of a particular algorithm on a particular instance was successful or not.
The column names should be the same as for the data frame that holds the al-
gorithm performance values, and there should also be an ID column. Each cell
holds a Boolean value designating whether the run was a success or not. The
definition of “success” depends on the context; it can for example determine
whether an algorithm returned a solution within a certain runtime limit. If this
argument is specified, an additional way of evaluating the performance of an
algorithm selection model is available. There are no other differences; most of
the functionality of LLAMA does not require success values.

Another optional argument can be given to specify the cost of computing
the feature values. This overhead incurred by the algorithm selection system
needs to be taken into account to provide a realistic performance evaluation of
the learned models. There are three different ways of specifying feature costs.
A single number is assumed to be the cost for each instance. Alternatively, a
data frame with an ID column and a column for each feature can be given. The

entries in the rows denote the cost of computing the respective feature value
for the respective instance. The third way of specifying feature computation
costs is through a list that specifies feature groups and their costs. More details
on how to specify feature costs along with examples can be found in LLAMA’s
on-line help.

If feature costs are specified, they are automatically taken into account dur-
ing the evaluation of the learned models. Cost and performance are assumed
to be additive — that is, the cost can be added to the performance value. This
covers the most common case for algorithm selection where the performance is
the runtime. In addition to adding the cost, LLAMA also checks whether, with
the overhead included, the system would incur a timeout and takes appropriate
action if this is the case.

The final (and again optional) argument tells LLAMA whether low per-
formance values are good or bad. It specifies how LLAMA determines the best
algorithm, given the performances of the algorithms on an instance. The de-
fault behaviour is to assume that smaller values are better (the values give
e.g. runtimes). For the opposite behaviour (e.g. quality of solution), specify
minimize=F.

Assume that your data is in a set of CSV files with the following format.

features.csv:
ID,width,height
0,1.2,3
...more instances...

performance.csv:
ID,algl,alg2
0,2,5
...more instances...

success.csv:
ID,algl,alg2
o,T,F
...more instances...

You can load this data into LLAMA as follows.

data = input(read.csv("features.csv"), read.csv("times.csv"),
read.csv("success.csv"))

The input function automatically computes all the meta data required by
LLAMA — the return value can be used right away. Full details on the returned
structure can be found in the on-line documentation.

3.2.1 Algorithm Selection Benchmark Library

The Algorithm Selection Benchmark Library ASlib! offers, at the time of writ-
ing, 14 different scenarios that have been used in algorithm selection publica-
tions. It defines a data format for these scenarios as well.

LLAMA supports the ASlib data format through the conversion functions
provided by the aslib package? and is used to run the benchmark experiments
whose results are presented on the ASlib website.

library(aslib)
scenario = parseASScenario("/path/to/scenario/dir")

1df = convertTolLlama(scenario)
folds = cvFolds(1df)
model = classify(makeLearner('"classif.J]48"), folds)

folds = convertToLlamaCVFolds(scenario)
model = classify(makeLearner('"classif.J]48"), folds)

3.2.2 Example data

LLAMA comes with some example data that you can play around with as a
start. The data is runtime data for 19 SAT solvers on 2433 SAT instances [9].
For each instance, 36 features were measured. Success data (i.e. whether an
algorithm timed out or not) is also available, but feature computation costs are
not.

To use this data, type

data(satsolvers)

If you want to run the examples in the remainder of this document with this
data, run

data = satsolvers

3.3 Slicing and dicing the data

Machine learning models are usually trained and tested on separate data. This
is to avoid so-called overfitting, where the model learned is so specific to the data
it was trained on that the predictions on anything else are very inaccurate, and
to provide a realistic estimate of generalisation performance. LLAMA provides
functions to split a data set into training and test sets. This is one of the tedious
and error-prone steps that researchers have to deal with in practice and that
LLAMA aims to make less painful. To split the data into 60% training and

1http://aslib.net
2https ://github.com/coseal/aslib-r

40% test sets, we can run the following command, assuming that your data is
available in the data variable.

split = trainTest(data)

The second (optional) argument of the function specifies what fraction of
the total data should be used for training. If, instead of a 60-40 split, we want
a 70-30 split, all we need to do is run

split = trainTest(data, 0.7)

By default, the training and test partitions are not stratified. This means
that the data is split randomly regardless of the performance characteristics in
the data. To turn stratification on, give the additional argument stratify = TRUE.
Then, the distribution of best-algorithm labels in the partitions will be approx-
imately equal. If, for example, solver A is the best on 90% of the instances and
solver B on the remaining 10% in the training set, the same will be the case in
the test set.

In addition to a simple train-test split, LLAMA also provides function to
create data folds for cross-validation using bootstrap sampling and cross-fold
partitioning [12]. These methods are in general seen as more reliable ways
of evaluating the performance of a learning algorithm. The main difference
between bootstrap and cross-validation sampling is that in the former case,
there is no guarantee on the distribution of the instances (in particular individual
instances may appear multiple times across several folds), while cross-validation
splits the data into n disjunctive sets. To partition the entire data into 10 folds,
run

folds = bsFolds(satsolvers)
folds = cvFolds(satsolvers)

The optional second argument nfolds allows to specify the number of folds
for both functions. LLAMA transparently takes care of training and evaluating
models regardless of how many splits or folds you have.

3.4 Training and evaluating models

Now that we have both training and test data, we can train an algorithm selec-
tion model. To start with, we will train a simple classification model that, given
the features of an instance, predicts the algorithm to use. This approach is used
for example in [5]. We train a model using the C4.5 decision tree learner [18].
For this, we call classify with the name of the machine learning algorithm
and the data folds created above.

model = classify(makeLearner('"classif.J48"), folds)

For the other available machine learning models, please consult the mlr
documentation [1].

The call to classify trains and tests models on each cross-validation fold.
That is, for n folds it trains n models using n — 1 partitions for training and the
remaining partition for testing. The predictions on these testing partitions are

10

returned along with a prediction function that uses a model that was trained
on the entire, unsplit data set. While the cross-validation predictions allow to
assess the expected performance of the model, the returned prediction function
can be used as a building block for a portfolio system to obtain predictions on
new data. For full details on the returned data structure, see the on-line help.

LLAMA provides several functions to evaluate the performance of an ap-
proach based on the predictions made. The misclassification penalty quantifies
how much performance we lose because of prediction mistakes. If the perform-
ance is e.g. runtime, it measures how much additional time we need, i.e. the
difference in runtime between the algorithm chosen by the model and the best
possible choice for each problem instance. Another common performance meas-
ure for runtime performances is the PAR (penalized average runtime) score.
The score is equal to the time it took the algorithm to solve the instance or, if
the algorithm was unable to solve it, a constant factor times the time-out value.
Usually, PAR10 is used, meaning that time-outs are penalized by a factor of 10.
To compute the average PAR10 score and the total number of solved instances
of the approach using the C4.5 decision tree, we can run the following code.

mean(misclassificationPenalties(folds, model))
[1] 114.4854

mean(parscores(folds, model))
[1] 5891.54

sum(successes(folds, model))
[1] 2039

The evaluation functions take the data for which the predictions were made
as their first argument and the model that contains the predictions or the func-
tion that returns predictions (in the case of virtual best and single best al-
gorithms) as the second. Optional arguments can be given to specify penalty
factors and time-out values where applicable. By default, the performance value
given for an unsuccessful run is assumed to be the time-out if the performance
is runtime.

All evaluation functions return a list of the respective values for the chosen
algorithm for each instance. That is, if there are 100 instances in the data,
misclassificationPenalties will return a vector of 100 values.

head(misclassificationPenalties(folds, model))
[1] 0.002062 0.000000 0.014942 0.000000 0.000000 0.000000

The predictions LLAMA models computes are actually not just simple la-
bels. The prediction object is a data frame that contains information on the
predictions on every instance and algorithm — the score. The meaning of the
score value depend on the model-building function that is used and are ex-
plained in the respective on-line help pages. In this case, the score for only a

11

single algorithm per instance will be 1, meaning that this is the algorithm that
was predicted by the one classifier.

head(model$predictions)

benchmark_id algorithm score iteration
1 408 picosat 1 1
2 408 minisat 0 1
3 408 cryptominisat 0 1
4 408 glucose 0 1
5 408 minisat_noelim 0 1
6 408 lingeling 0 1

The iteration column specifies in which iteration of the cross-validation
the prediction was obtained.

Computing metrics like the misclassification penalty or the number of suc-
cesses doesn’t give us a very good idea of how good the approach actually is. In
the algorithm selection community, two common approaches to compare against
are the virtual best solver and the single best solver. The virtual best solver
assumes that we have a perfect predictor that will always choose the best al-
gorithm for a particular instance. It determines the best possible performance
a selector can achieve. The single best solver is the algorithm in the portfolio
that has overall the best performance, e.g. on the largest number of instances
in the data set or with respect to another evaluation criterion.

LLAMA provides convenience functions that allow to compare to both vir-
tual best and single best solver. They are used in the same way as the predictions
from a model are.

mean(misclassificationPenalties(data, vbs))
[1] ©
mean(parscores(data, vbs))
[1] 4631.264
sum(successes(data, vbs))
[1] 2125
mean(misclassificationPenalties(data, singleBest))
[1] 122.3186
mean(parscores(data, singleBest))
[1] 5778.983
sum(successes(data, singleBest))
[1] 2048
Comparing those numbers to the ones from the model that we trained should
give us a better idea of its performance. Ideally, the model performance should
be better than the one of the single best solver and as close to the virtual best
as possible.

There are several different definitions for the single best solver, depending
on the performance measure used to determine it. The singleBest function

12

determines it as the one that has the best cumulative performance over all prob-
lem instances in the data set. LLAMA also provides functions to determine the
single best by PAR score (singleBestByPar), by number of problem instances
solved (singleBestBySuccesses), and by number of instances it delivered the
overall best performance on (singleBestByCount).

As mentioned above, the model-building function also returns a prediction
function that allows to work with new data. As an example, we will use it to
make predictions for the data that we have. Note that we're getting predictions
for the same data that we used to train the model here — do not use these
predictions to evaluate the performance, this example is purely to illustrate
what code to run.

predictions = model$predictor(subset(data$data,
TRUE, data$features))

head(predictions)

id algorithm score iteration
1 1 mxc 1 1
2 1 minisat 0 1
3 1 cryptominisat 0 1
4 1 glucose 0 1
5 1 minisat_noelim 0 1
6 1 lingeling 0 1

Oh and if you want better model performance than the single best, try the
randomForest classifier from the quick start.

3.5 Other available model types

Instead of using the 148 decision tree inducer, we can use any other classifica-
tion algorithm. The only change needed is to give the other machine learning
algorithm as the first argument.

Building a classifier to predict the best solver for a problem is only one
of the approaches to providing a selector for algorithm portfolios. A different
approach is used for example in older versions of SATzilla [27]. For each solver
in the portfolio, a regression model is induced to predict the performance of the
solver on a particular problem. Given these predictions, the solver with the best
predicted performance is chosen.

LLAMA supports this kind of performance model as well. All we have to do
is call a different function and pass in a machine learning algorithm that is able
to learn models to predict numeric quantities as an argument.

model = regression(makeLearner("regr.lm"), folds)

You will notice that running this command takes longer than for the clas-
sification example. This is because instead of a single classification model, we
now need to train one regression model for each algorithm in the portfolio (if
you're using the example SAT data, 19 different models).

13

The structure returned by the call is the same as for classification and per-
formance scores and similar are calculated in the same way. LLAMA offers a
unified interface for all its model-building functions that makes it easy to quickly
try different approaches. The difference is that the score in the prediction data
frame now denotes the predicted performance value.

head(model$predictions)

benchmark_id algorithm score iteration
1 408 precosat -36.65360 1
2 408 picosat -34.44392 1
3 408 qutersat -34.15245 1
4 408 MPhaseSAT64 -33.95013 1
5 408 glueminisat -32.67685 1
6 408 riss -32.65705 1

Apart from the fact that the regression model is predicting negative runtimes,
it appears to work quite well. It does not really matter that the values are neg-
ative in this case, as we only use them to rank the algorithms.

The regression function determines whether the lowest performance value
denotes the best algorithm by what has been specified when running input.

The approach used in the most recent version of SATzilla is to train classifiers
that predict the better algorithm for each pair of algorithms [28]. This approach
is a hybrid between the single classification model and the regression approach.
Its strength comes from the fact that it explicitly considers the relation between
two algorithms. It is usually easier to predict which of a pair of algorithms
will be better rather than choosing the best from a large set or predicting the
performance for each.

The predictions of the individual classifiers are aggregated as votes and the
algorithm that has most votes wins. The number of votes for each algorithm
can be used to rank all of the portfolio algorithms. This approach is also im-
plemented in LLAMA. The function is called classifyPairs and conforms to
the usual interface.

model = classifyPairs(makeLearner('classif.J]48"),
folds)

Running this command on the example SAT data will take quite a long time,
as a model for each pair of algorithms needs to be trained. This approach offers
great potential for parallelisation though; for more details, see Section 4.4.

The data frame of predictions now looks as follows; the score corresponds to
the number of votes.

head(model$predictions)

benchmark_id algorithm score iteration
1 408 cryptominisat 93 1
2 408 minisat 78 1
3 1022 cryptominisat 108 1
4 1022 minisat 63 1

14

5 1280 cryptominisat 94 1
6 1280 minisat 77 1

The model-building function regressionPairs follows the same idea, but
uses regression models to predict the performance difference between pairs of
algorithms instead of simply whether one is better than the other.

A different approach to algorithm selection that is used for example in
ISAC [11] is to cluster the training problem instances and assign the best al-
gorithm to each cluster based on the algorithm performances on the instances
in the cluster. Again the only change is to call a different function, this time
the cluster function with the XMeans clustering algorithm.

model = cluster(makeLearner('cluster.XMeans"),
folds)

The return value corresponds to the usual format. The prediction data frame
contains all portfolio algorithms ranked by performance. The score corresponds
to the sum of the performances over all training instances in the respective
cluster.

head(model$predictions)

benchmark_id algorithm score iteration
1 408 clasp 446.3364 1
2 408 cryptominisat 471.5320 1
3 408 qutersat 479.6736 1
4 408 mxc 522.1233 1
5 408 glucose 600.1904 1
6 408 march_rw 644.0489 1

The cluster model-builder provides different ways of determining the best
algorithm for a cluster that correspond to the different ways of determining
the single best algorithm. The method to use is determined by the bestBy
argument, which defaults to “performance”.

4 Advanced functionality

The previous section gave a glimpse of the core functionality of LLAMA. There
is much more functionality beyond that though. All the functions we have used
previously take additional arguments that allow them to be customised. The
model building functions can work with several machine learning algorithms
instead of just one. There are more functions that do exciting things>.

4.1 Processing the input data

The feature and performance data is often messy — there are missing values,
the values of some of the features are the same on all instances, or there is

3For suitable definitions of “exciting”.

15

no correlation between feature values and performance. All of this can impact
the performance of machine learning models. LLAMA provides functionality to
mitigate this.

4.1.1 Normalising feature values

For some types of models, it may be desirable to normalise the feature values
such that they cover the same range over all features. If, for example to cluster
the instances, we compute the distance between two instances based on the
feature values in Euclidean space and the values for a particular feature happen
to be 1000 times larger than the other ones, this feature will have the highest
impact on the result, even though it may not be important.

LLAMA provides a function that allows to normalise the values of features
before they are passed to the model learner. To normalise the feature values,
scaling factors need to be computed. These same scaling factors need to be
applied when working with new data, i.e. when using the predictor function
returned by the model builders.

This is why normalisation is implemented as an optional argument to the
model-building functions instead of a standalone functions. The scaling factors
are computed for the training data and saved in the environment such that they
can be applied to new data later.

LLAMA currently provides only a single function, normalize, for feature
value normalisation. This function scales the feature values such that the range
for all features is -1 to 1. It is specified through the pre argument.

model = cluster(makeLearner('"cluster.XMeans'"),
folds, pre = normalize)

mean(misclassificationPenalties(folds, model))

[1] 104.3893

mean(parscores(folds, model))

[1] 5721.646

sum(successes(folds, model))

[1] 2051

We are using the cluster model builder here, as clustering is an application
that intrinsically relies on distance measures and is likely to be most affected
by large differences in the range of feature values. The feature values can be
normalized for all of the other model-building functions in the same way.

4.1.2 Imputing censored runtimes

Working with empirical performance data is often difficult. If the problem
instances are challenging, some of the algorithms may take a very long time to
solve them — longer than one is prepared to wait. Usually, algorithms are run
with a time-out. That is, if the algorithm did not find a solution after a certain
amount of time, it is terminated — its runtime is censored. While this allows
to gather data in more reasonable amounts of time, the result makes machine

16

learning more difficult — if an algorithm timed out, the recorded runtime is not
actually the value we want to predict.

One way of addressing this issue is to impute the censored runtimes by
learning a machine learning model to predict the runtime on the instances that
did not time out and then apply it to the instances that timed out. This process
can be repeated to get better models and estimates [21].

This method is implemented in LLAMA in the imputeCensored function.
Its arguments are a LLAMA data frame, the regression algorithm to model the
runtime, and termination conditions. It returns a new data frame with the
imputed censored runtimes. Note that, similar to the regression model learner,
the imputation function does not check the plausibility of the results — it is
possible that the predicted runtimes are less than the time-out!

imputed = imputeCensored(data, makeLearner("regr.lm"))

imputedFolds = cvFolds(imputed)

imputedModel = regression(makelLearner('regr.lm"),
imputedFolds)

mean(misclassificationPenalties(folds, model))

[1] 104.3893

mean(parscores(folds, model))

[1] 5721.646

sum(successes(folds, model))

[1] 2051

mean(misclassificationPenalties(imputedFolds,
imputedModel))

[1] 44.84682

mean(parscores (imputedFolds, imputedModel))

[1] 74.07171

sum(successes (imputedFolds, imputedModel))

[1] 2433

The performance of the new model with imputed performance values is much
better in terms of average PAR10 and number of solved instances, but this is
to be expected — all instances in the data are “solvable” after imputation, so no
penalties will be imposed. However, we can compare the mean misclassification
penalty for the old and new models — there is a clear improvement there as well.

4.2 Portfolio analysis

LLAMA provides the contributions function to analyse the contributions a
single algorithm makes to a portfolio using techniques from game theory [19].
Running this on the example data distributed with the package gives the fol-
lowing result:

sort(contributions(satsolvers), decreasing = TRUE)

17

clasp cryptominisat qutersat glucose
#i# 42499.1089 8854.7117 -740.2909 -4678.7110
mxc march_rw MPhaseSAT64 precosat
-28069.9128 -33521.0780 -44008.3382 -54136.9820
picosat glueminisat lingeling contrasat
#i# -64197.8563 -67935.5264 -76489.3100 -78365.7487
#i# sat4j riss cirminisat minisat
-82804.3613 -88360.4072 -89550.5715 -99151.8748
minisat_noelim rsat kenfs

##

-108837.5158

-180762.3266

-238407.9801

The negative numbers designate solvers that do not contribute anything to
the portfolio, but causes its performance to decrease. The solver clasp makes
the largest contribution.

This analysis can be used to determine which algorithms should be included
and which ones should be omitted from a portfolio. Note that it is entirely
separate from learning a model to make the predictions necessary to choose a
solver from the portfolio for a particular problem instance — the analysis is done
for the virtual best portfolio. As such, the theoretical best portfolio might not
be the best portfolio to learn models for. To achieve the best performance in
practice, the combination of portfolio and algorithm selection model has to be
evaluated.

4.3 Ensembles and stacking

One of the main strengths of LLAMA is that meta-learning methods, for ex-
ample ensembles and stacking, can be applied to all of the model building func-
tions easily. The idea behind these techniques is similar to that of algorithm
portfolios — instead of relying on a single machine learning algorithm and the
model it learns to deliver good predictions, we use several that (hopefully) com-
plement each other.

The two implemented concepts are ensembles [4] and stacking [23]. In en-
semble learning, multiple machine learning algorithms are run on the same data,
learning multiple independent models. The predictions of each model are then
combined to determine the overall prediction. In stacking on the other hand,
several machine learning algorithms are layered on top of each other. That is,
the first layer learns a model based on the actual data, while the second layer
takes the predictions of the first layer as input. The two approaches can be
combined — the predictions of an ensemble may be used as the input to a second
layer of machine learning that makes the final prediction.

For the classify model building functions, both ensemble learning and
stacking have been implemented. To use an ensemble, the first argument be-
comes a list of classification algorithms instead of a single one. To use stacking,
that list should have a member named .combine.

Here’s an example with an ensemble that contains a J48 decision tree, a
CART tree, and a nearest neighbour classifier. In the second example, the

18

predictions of these classifiers are combined using another J48 decision tree.

ensembleModel = classify(list(makelLearner("classif.J48"),
makeLearner("classif.rpart"), makeLearner('"classif.knn")),
folds)

stackedEnsembleModel = classify(list(makeLearner("classif.J]48"),
makeLearner("classif.rpart"), makeLearner("classif.knn"),
.combine = makeLearner('"classif.J48")), folds)

mean(misclassificationPenalties(folds, model))

[1] 104.3893
mean (parscores(folds, model))
[1] 5721.646
sum(successes(folds, model))
[1] 2051
mean(misclassificationPenalties(folds, ensembleModel))
[1] 101.2529
mean(parscores(folds, ensembleModel))
[1] 5825.041
sum(successes(folds, ensembleModel))
[1] 2043
mean(misclassificationPenalties(folds, stackedEnsembleModel))
[1] 144.1736
mean(parscores(folds, stackedEnsembleModel))
[1] 6134.288
sum(successes(folds, stackedEnsembleModel))
[1] 2023
Compared to the model based on the single 148 classifier, ensemble learning
improves performance a bit, but stacking does not help.

The prediction data frame for ensemble models has the number of votes for
each algorithm as score.

head(ensembleModel $predictions)

benchmark_id algorithm score iteration
1 408 clasp 2 1
2 408 picosat 1 1
3 408 minisat 0 1
4 408 cryptominisat 0 1
5 408 glucose 0 1
6 408 minisat_noelim 0 1

For regression models, stacking as described in [14] is implemented. Instead
of aggregating the predicted performance values by ranking them directly, a
classifier is learned to predict, given the performance predictions, the best al-
gorithm. To achieve this, a classification algorithm is given as the combine

19

argument.

stackedModel = regression(makeLearner('regr.lm"),
folds, combine = makeLearner('classif.J48"))

mean(misclassificationPenalties(folds, model))

[1] 104.3893

mean(parscores(folds, model))

[1] 5721.646

sum(successes(folds, model))

[1] 2051

mean(misclassificationPenalties(folds, stackedModel))

[1] 128.6861

mean(parscores(folds, stackedModel))

[1] 5985.637

sum(successes(folds, stackedModel))

[1] 2033

On the example data, the performance of the stacked model is worse than
for the non-stacked version. The reason for this is that for the combination
function, choosing the algorithm with the lowest predicted value is very hard to
learn when considering only the performance values independently and not the
relation between them.

LLAMA does support an additional argument for regression that allows to
make this task easier. The expand argument allows to specify a function that,
given the performance predictions, can augment the inputs to the classifier. In
this case, we want to add the pairwise absolute differences between the predicted
performances of algorithms.

stackedExpandedModel = regression(makeLearner("regr.lm"),
folds, combine = makeLearner('classif.J48"),
expand = function(x) {
cbind(x, combn(c(l:ncol(x)), 2, function(y) {
abs(x[, y[1]1]1 - x[, y[21D)
}3))
|3)

mean(misclassificationPenalties(folds, stackedModel))

[1] 128.6861

mean(parscores(folds, stackedModel))

[1] 5985.637

sum(successes(folds, stackedModel))

[1] 2033

mean(misclassificationPenalties(folds, stackedExpandedModel))
[1] 137.5572

mean(parscores(folds, stackedExpandedModel))

20

[1] 6127.672
sum(successes(folds, stackedExpandedModel))
[1] 2023

While the function given here may appear cryptic at first, it demonstrates
one o the advantages of the implementation of LLAMA as an R package. It
allows to use arbitrary R functions to process data. This version achieves an
improvement over the stacked model without expansion.

For the classifyPairs and regressionPairs model builders, LLAMA sup-
ports stacking in the same way as for regression. Stacking can be used to
provide a classification algorithm in the combine argument that learns to pre-
dict the best algorithm, given the predictions of the underlying machine learning
models for pairs of algorithms.

The cluster model builder supports these techniques in the same way as
classify. More details and examples can be found in the on-line documentation
for each of the model builders.

4.4 Parallel execution

Some of the models can take a very long time to train. Most of the opera-
tions are independent though and can be parallelised easily. LLAMA uses the
parallelMap construct from the parallelMap package® to parallelise execution
across cross-validation folds. That is, the models for each iteration will be
trained and tested in parallel. The parallelMap construct provides transpar-
ent parallelisation that executes sequentially if no suitable parallel backend is
loaded. All the user has to do to enable parallel execution is to load a paral-
lel backend, for example through parallelStartSocket. Libraries used in the
spawned processes should be specified through parallelLibrary.

library(parallelMap)
parallelStartSocket(2)
parallellLibrary("llama", "mlr")

parallelStop()

After running these commands, all subsequent calls to LLAMA model build-
ing functions will be parallelised across 2 CPUs.

Note that the functions provided by RWeka rely on a Java interface that is
not thread-safe. The Weka machine learning algorithms can still be used with
parallel execution though if a backend is used that runs separate processes, such
as the sockets backend used above.

4.5 Instance weights

In algorithm selection, not all problem instances are equal. On some of them, it
doesn’t really matter which algorithm we choose, either because the performance

4https ://github.com/berndbischl/parallelMap

21

difference is small, or because the performance is so good (e.g. the runtime is
so low) that in practice making a wrong decision won’t matter that much. On
the other hand, there are instance that we really do want to get right because
of massive differences in performance that matter a lot in practice.

LLAMA supports instance weights for all selection model building functions
except cluster, where such weights cannot be incorporated in a meaningful
way. If the underlying machine learning algorithm supports case weights, each
instance has the performance difference between the best and the worst al-
gorithm attached to it. This happens by default, but you can explicitly disable
weights with the use.weights = FALSE argument to the model building func-
tions.

5 Visualising the data

This part is going to be a bit more graphic than the previous rather dry sections
— we are going to have a look at visualising the data we have been working with.
R offers many possibilities for doing so and surveying them all is far beyond the
scope of this manual. We only give a flavour of what visualisations can be done.

A simple way of “visualising” predictions is to simply print a table of how
many times each algorithm was predicted. LLAMA provides the function predTable
for this purpose. It takes the list of predictions as argument.

predTable(vbs(satsolvers))
algorithms

cryptominisat minisat_noelim picosat glucose
377 356 293 289
#i# march_rw clasp mxc cirminisat
267 215 168 83
#i# glueminisat minisat MPhaseSAT64 precosat
#i# 70 53 45 40
qutersat contrasat lingeling rsat
33 32 32 30
riss kenfs sat4j

21 15 14

predTable(model$predictions)

algorithms
clasp glucose cryptominisat
#i# 1778 437 218

5.1 LLAMA’s plotting functions

LLAMA provides visualisation functionality that is tailored for algorithm selec-
tion, but this is by no means the only to plot and try to make sense of the data.
In particular, it provides the function perfScatterPlot, which allows you to

22

single best

' ' '
1 100 10000

Figure 2: PAR10 performance comparison between J48 decision tree selection
model and single best.

plot a scatter plot that compares the performance of two selectors. What is
does is best illustrated through an example.

model = classify(makeLearner('classif.J]48"), folds)
perfScatterPlot(parscores, model, singleBest,
folds, satsolvers) + scale_x_logl®() + scale_y_logl®() +
xlab("J48") + ylab("single best")

The first argument to perfScatterPlot is the metric to use for evaluation,
the second and third the models to compare (which may be functions such as
singleBest), and the last two arguments the data to evaluate the respective
models on. Here, we need two different data sets as the learned model should
be evaluated on the split data, while the single best is computed on the entire
data. If both models are of the same type and should be evaluated on the same
data, it needs to be given only once.

The resulting plot can be seen in Figure 2. Each point corresponds to a prob-
lem instance in the dataset. Points on the line mean that both selectors (the 148
decision tree classifier selection model and the single best algorithm) achieved
the same performance. Points below the diagonal mean that our trained selector
was better and above the diagonal the single best algorithm.

Scatter plots like this are useful for inspecting what a selection model does
and where its weaknesses lie. LLAMA allows to pass additional information

23

random forest

' ' '
1 100 10000
J48

Figure 3: PAR10 performance comparison between J48 decision tree and ran-
dom forest selection models.

that can be used to e.g. change the shape or colour of the points according
to the group the problem instance belongs to. Internally, ggplot2 is used for
plotting and its power is available for customising the plot. The ggplot object
is returned from the function to allow further modifications.

Figure 3 shows another scatter plot that compares the performance of two
“real” models instead of a model and a baseline.

modell = classify(makeLearner('"classif.J]48"),
folds)

model2 = classify(makeLearner("classif.randomForest"),
folds)

perfScatterPlot(parscores, modell, model2, folds) +
scale_x_logl®() + scale_y_logl®() + xlab("148") +
ylab("random forest™)

5.2 Other ways of plotting data

It is always useful to have a look at the data one will be working with. LLAMA
does not provide any functions for visualisation of the raw data, but it is easy
enough to do in R. In our case, there are two main groups of data — the per-
formance values and the features. Let’s have a look at the performance values

24

0O 0.03291
| 3600

|
WI o

wu IIH I

i

| | AN M

|

minisat 4
cryptominisat —
glucose —
minisat_noelim —

Figure 4: Runtimes by

lingeling —|
clasp
picosat —|
precosat —
kenfs ~|
march_rw —|
mxc -

riss

sat4j |
glueminisat o
qutersat —
contrasat —
MPhaseSAT64 —|
cirminisat —
rsat —

solver and instance from almost instantaneous solve

(white) to timeout (black).

first. Throughout this section, we will be using the example SAT data, but the
same methodology applies to any other data in LLAMA format. As we have a
large amount of data to visualise, we are going to use heatmaps.

data(satsolvers)

times = subset(satsolvers$data, T, satsolvers$performance)

par(mar = c(7, 1, 3,
cols = gray(seq(l, ©

1)

, length.out = 255))

image(t(as.matrix(times)), axes = F, col = cols)
axis(1l, labels = satsolvers$performance, at = seq(0,
1, 1/(length(satsolvers$performance) - 1)),

las = 2)

legend("top", legend = c(min(times), max(times)),

fill = c("white"
xpd = NA)

, "black"), bty = "n", inset = -0.12,

The resulting plot is shown in Figure 4. After extracting the performance
values (runtimes in this case) from the LLAMA data frame, setting some plot
parameters and creating a black and white colour scale, we plot the heatmap,
axis, and legend. The map shows the time each solver takes on each instance.

There is a large spread of runtimes in our data, with most instances being
solved either instantaneously or timing out. The figure looks accordingly, with

25

0O 0.03291
B 3600

minisat -
glucose |
lingeling
clasp
picosat —|
precosat |

kenfs

march_rw
qutersat —
contrasat 4‘
1aseSAT64 —
cirminisat —|
rsat —

sat_noelim —
Jlueminisat —

yptominisat —

Figure 5: Log runtimes by solver and instance from almost instantaneous solve
(white) to timeout (black).

most colours being either white or black and very little grey in between. Plotting
the log of the runtime is more informative (Figure 5).

image(logl®(t(as.matrix(times))), axes = F, col = cols)
axis(1l, labels = satsolvers$performance, at = seq(O0,
1, 1/(length(satsolvers$performance) - 1)),
las = 2)
legend("top", legend = c(min(times), max(times)),
fill = c("white", "black"), bty = "n", inset = -0.12,
xpd = NA)

When doing algorithm selection, we are usually more interested in how the
performance of a solver compares to the other solvers in the portfolio rather
than the absolute value. We can plot the rank of each solver on each instance
in a similar fashion to before (Figure 6).

image(apply(times, 1, order), axes = F, col cols)

axis(1l, labels = satsolvers$performance, at = seq(O0,
1, 1/(length(satsolvers$performance) - 1)),
las = 2)

legend("top", legend = c(1, length(satsolvers$§performance)),
fill = c("white", "black"), bty = "n", inset = -0.12,

26

rsat

minisat
clasp

T
Q
o
Q2
=

yptominisat
glucose
sat_noelim
lingeling
precosat
Jlueminisat
qutersat
contrasat
1aseSAT64
cirminisat

Figure 6: Solver ranks on each instance from first (white) to last (black).

xpd = NA)

The same kind of visual analysis can be applied to the features. This is
probably even more important that analysing the performance data, as the
features are used to create the models we are going to use for algorithm selection.
If the features are bad, the models will not be good either. Let’s do the same
kind of plot we did for the solvers for the features.

features = subset(satsolvers$data, T, satsolvers$features)
par(mar = c(10, 1, 3, 1))
image(t(as.matrix(features)), axes = F, col = cols)
axis(1l, labels = satsolvers$features, at = seq(O0,
1, 1/(length(satsolvers$features) - 1)), las = 2)
legend("top", legend = c(min(features), max(features)),
fill = c("white", "black"), bty = "n", inset = -0.12,
xpd = NA)

The resulting plot is shown in Figure 7. The values for four of the features
are much higher than the rest. It is hard to see the variance of the feature values
for a particular feature over the set of instances because of this.

We get a better plot from the normalised feature values (Figure 8).

27

O -2.18850558013
| 100
I -
- = m
[TTTTTTTTTTTTTTTTTTTTTT rrr1rrrr 11 T1T11
NDNNNNNNNNDNIEENDSIETLOOOSISERE Y 000
Er:wf:ﬁa)ccu.*:wEa-g,-g,wm.?ﬁggﬁNN.‘:rz%égé%gg>a~.@
808 LS8085E58220a 5% 8880302222833 285c0
Soc TGOS 881000228222 EETEETLEScTS
2582398835 /22CO0LEDTTEEEE |19C S |§|E="’®w
S85e8 185 s N8G5 88. /0028855 /582sEQa
8og T BoEsLEEeE B EgE R 8858 8E 38 0]
do° T oRdEo882 08 8800954 /55885255399
jsgel 503890 c89zTe>F L5853 ¢ o033
2= X 12 1859 1> Loov TIE®E 5o ST
3o 9230 5T g (= e] o5 o Ox !
18 572583 gegEee 28 s g
8~ £ ° SO03G 5D gce@
=] >c 887088 o855
= ©'s 2L <) g0
© o [ol} @ Q

Qo SN -} Q.

Figure 7: Feature values on each instance from lowest (white) to highest (black).

nFeatures = normalize(features)
par (mar c(10, 1, 1, 1))

image(t(as.matrix(nFeatures$features)), axes = F,
col = cols)
axis(1l, labels = satsolvers$features, at = seq(O,

1, 1/(length(satsolvers$features) - 1)), las

2)

The features for the example data are not very good. For quite a lot of them,
there is almost no variation and others have only two different values.

We can apply the same kind of analysis to the prediction results. This allows
us to get an idea of what the machine learning algorithms are doing, where they
work well and where things could be improved. The following code creates a
heatmap of the PAR10 scores of a classification model on all instances. We are
using the log of the PAR10 scores to get more shades of grey.

folds = cvFolds(satsolvers)

model = classify(makeLearner('classif.J]48"), folds)
scores = parscores(folds, model)

par(mar = c(l1, 1, 1, 10))

image(logl®(t(as.matrix(scores))), axes = F, col

legend("right", legend = quantile(scores), fill =

0, length.out 5)), bty = "n", inset = -0.3,

28

= cols)
gray(seq(l,

Arepaid~ e uapad
azispald Bae uayiad
adeyspaid—baeuariad
aAie|NWNI juadlad
Juswafe juadiad
wnsmjusolad

Hiplre juaalad
1xaabue| uapad
1xeAreu”usyiad
xaulq”uaied

Hiple” wnu

Anupuod uiwjusdsad
Aununuod~ Bae Juaaiad
aziswop xew ubs
aziswop bae ubs
ayeoipaid 2ap jusdlad
ayeoipaid oeb jusolad
[eqo|6 juadiad

X9 juaolad

Are xew
sbedoid Bo| uAp
sapou” bo| uAp
ybiam™ nepis~ Bo| uAp
yBiam Bae Bo| uAp
slen yoreas Boj
sjurensuod” 6o|
sanjen enxa Ho|

s)q enxa bo|
sabues enxa” bo|
suea|00q elxa bo|
sanjen” bo|

sis|| Boj

s)q~bo|

sabues bo|
suesjooq Ho|
sjuelsuod” bo|

Normalised feature values on each instance from -1 (white) to 1

Figure 8
(black).

29

0.03684
0.22763
5.332281
103.064622
36000

EEROO

Figure 9: PARI10 scores for a extttJ48 classification model.

xpd = NA)

The resulting plot (Figure 9) gives us some idea of what’s going on, but
looks more like a bar code than anything else.

The power of heatmaps comes from being able to compare multiple entities.
A more useful plot compares the performance of the classification model to the
performance of other models. The following code can be used to generate such
a plot (Figure 10).

folds = cvFolds(satsolvers)

modell = classify(makeLearner('"classif.J]48"),
folds)

model2 = regression(makeLearner('regr.lm"), folds)

model3 = classifyPairs(makeLearner('"classif.J]48"),
folds)

model4 = regressionPairs(makeLearner('regr.lm"),
folds)

model5 = cluster(makeLearner("cluster.XMeans"),
folds)

scoresl = parscores(folds, modell)

scores2 = parscores(folds, model2)

scores3 = parscores(folds, model3)

30

.

classify classifyPairs cluster
J48 J48 XMeans
5891.46487724209 6578.16120271188 5722.43766998356
O 0.0349
O 0.397474
B 6.818596
B 125.266497
H 36000

Figure 10: PARI10 scores for five different models. The number in each label
shows the mean PARI10 score across all instances.

scores4 = parscores(folds, model4)

scores5 = parscores(folds, model5)

par(mar = c(10, 1, 1, 1))

names = c(paste('classify", "J48", mean(scoresl),
sep = "\n"), paste('regression", "Im", mean(scores2),
sep = "\n"), paste("classifyPairs", "]48",
mean(scores3), sep = "\n"), paste('regressionPairs",
"lm", mean(scores4), sep = "\n"), paste("cluster",
"XMeans", mean(scores5), sep = "\n"))

scores = c(scoresl, scores2, scores3, scores4,
scores5)

image(logl®(t(matrix(scores, ncol = 5))), axes = F,
col = cols)

axis(1l, labels = names, at = seq(0®, 1, 1/(length(names) -
1)), las = 1, tick = F, line = 1)

legend("bottom", legend = quantile(scores), fill = gray(seq(l,
0, length.out = 5)), bty = "n", inset = -0.4,
xpd = NA)

This comparison is actually quite insightful. The predictions of the regression
model usually incur a higher PAR10 score (overall, the column is darker than

31

the others), but its mean PAR10 score is lower than for the other models. It also
shows us that for this specific scenario, there is almost no difference between
the single and pairwise classification models.

As a final example, we will plot the differences in predicted and actual rank
for the regression model (Figure 11).

par(mar = c(7, 1, 1, 5))
ranks = t(ddply(model$predictions, .(benchmark_id),
function(x) {
as.vector(sapply(x$algorithm, function(z) {
which(z == satsolvers$performance)
j9))
HI-1D
diffs = apply(times, 1, order) - ranks
cols = c(colorRampPalette(c("red", "white"))(128),
colorRampPalette(c("white", "blue"))(128))
breaks = c(seq(min(diffs), -1/128, length.out = 128),
0, seq(l/128, max(diffs), length.out = 128))
image(diffs, axes = F, col = cols, breaks = breaks)
axis(1l, labels = satsolvers$performance, at = seq(O0,
1, 1/(length(satsolvers$performance) - 1)),
las = 2)
legend("right", legend = quantile(diffs), fill = cols[quantile(l:length(cols))],
bty = "n", inset = -0.15, xpd = NA)

The plot is a bit messy, but there are some insights to be gained. Looking
at the solvers that perform well overall (e.g. minisat, leftmost column), we can
see that they are predominantly red, i.e. most of the time they are predicted to
be worse than they actually are. For the solvers that exhibit bad performance
(e.g. rsat, rightmost column), we observe that they are predominantly blue,
meaning that they are usually predicted to be better than they actually are.
This indicates that improvements are to be had by training better machine
learning models in this particular scenario.

The examples above only scratch the surface of the visualisations that are
possible in R. While none of the examples shown depends on LLAMA, the data
structures it provides facilitate the creation of such plots to some extent.

6 Case study: SATzilla

Algorithm selection systems often have additional components for which there is
no explicit support in LLAMA. This is not necessarily an obstacle though, much
additional functionality can be achieved by partitioning the data appropriately
and using other functionality that R provides.

This section outlines how to implement a SATzilla-like system with the help
of LLAMA and R. A full implementation is beyond the scope of this document;
instead, this section serves as a guide to researchers wishing to implement such

32

-18

| upupsy |
o

#IIIIIIIIIIIIIIIII
T ® % E Q2 FTEEL 3LIYPITRE T T IR
9 9 82 £ 8§ 985 S g2 2o 9L oo
£E£E58%7°88=s5 o £ g § &
EE 352 3 @ e E 3 £ Q@ E
S == =% o o T g 8 =
=1] £ S © 8 ©
g 3
o =
£ =

Figure 11: Difference between actual and predicted rank for the regression
model. Red means that an algorithm was predicted to be worse than it ac-
tually was, blue that it was predicted to be better. Predicted and actual rank

agree for white.

33

measures. There are several techniques that the various versions of SATzilla use
to make algorithm portfolios more performance in practice. We will sketch the
implementation of each in turn before putting it all together. The techniques
used in this section are described in more details in the SATzilla papers (e.g. [25,
27,28)).

The main difference of the implementation sketched here and SAT?zilla is that
we treat all problem instances the same way, without computing any weights
that determine the “importance” of the problem instance. In practice, using
weights is almost always a good idea.

6.1 Presolver

There are problem instances that can be solved almost instantaneously. For
these, the overhead of computing features, running the algorithm selection
model, and selecting a solver is too high. Using a portfolio is always going
to be slower for these problems. To avoid this issue, we can run a presolver for
a short amount of time.

This step is largely independent of training algorithm selection models. We
do however need to take into account that the problems that are solved by the
presolver within its time limit do not require algorithms to be selected for them,
so we should remove them from the data before training the model. This is done
easily in R.

performanceData = read.csv('performance.csv'")

presolveLimit = 1

presolver = "minisat"

newPerformanceData = subset(performanceData, performanceData[presolver] >
presolvelLimit)

data = input(read.csv("features.csv"), newPerformanceData)

Assuming that our presolver is minisat with a time-out of 1 second, we can
filter the data as above before passing it to input. There is no need to filter the
feature data, as LLAMA will discard any items it cannot match. The resulting
LLAMA data frame can be used as usual to train and evaluate models.

6.2 Prediction of satisfiability

SAT solvers often behave differently depending on whether an instance is sat-
isfiable or not. In practice, it can make sense to distinguish between these
instances in algorithm portfolios. This requires a larger number of machine
learning models. First, we need to be able to predict whether a given instance
is satisfiable or not. Second, we need different algorithm selection models for
the satisfiable and unsatisfiable cases.

To achieve this, we require additional data on whether an instance is satis-
fiable or not.

performanceData = read.csv('performance.csv'")
featureData = read.csv("features.csv'")

34

featureNames = names(featureData)[-1]
satisfiable = read.csv("satisfiable.csv")
satisfiableTask = makeClassifTask("satisfiable",
target = "satisfiable", data = cbind(satisfiable,
subset (featureData, T, featureNames)))
satisfiableModel = train(makelLearner('classif.J]48"),
task = satisfiableTask)
satisfiableData = input(featureData, subset(performanceData,
satisfiable$satisfiable))
unsatisfiableData = input(featureData, subset(performanceData,
Isatisfiable$satisfiable))

For simplicity, we assume that the first column of the feature file is an 1D
and that the order of the instances in the feature, performance, and satisfiable
files is the same. The satisfiableModel can now be used to predict the sat-
isfiability of a new instance, while the LLAMA data frames satisfiableData
and unsatisfiableData can be used to train and evaluate algorithm selection
models for the respective parts of the instance space.

6.3 Prediction of feature computation time

Computing the features of an instance is integral to algorithm selection sys-
tems. This information can be related to the performance of the algorithms to
make predictions as to which algorithm to use in a particular case. However,
sometimes just computing the features can take longer than it would take to
solve the instance. It is clearly desirable to identify these cases before starting
to compute the features.

To achieve this, we can train yet another machine learning model that, given
a small and cheaply computable subset of the features, predicts the time required
to compute the remaining features. If the time is too high, we simply run
a backup solver on the instance. Such instances should not be used in the
training and evaluation of the algorithm selection model.

featureTimes = read.csv("featureTimes.csv'")
reducedFeatureData = read.csv("reducedFeatures.csv'")
reducedFeatureNames = names(reducedFeatureData)[-1]
featureTimeTask = makeRegrTask("featureTime",

target = "time", data = cbind(featureTimes,

subset (reducedFeatureData, T, reducedFeatureNames)))

featureTimeModel = train(makeLearner('regr.lm"),

task = featureTimeTask)
featureTimeLimit = 5
data = subset(subset(read.csv("features.csv"),

featureTimes$time < featureTimeLimit), read.csv("performance.csv"))

Similar assumptions as in the section above are made. The LLAMA data
frame can now again be used in the usual manner to train algorithm selection

35

models.

6.4 Putting it all together

The techniques outlined in the previous section can now be put together to
implement a system similar to SATzilla.

performanceData = read.csv('performance.csv'")
featureData = read.csv('"features.csv'")
featureNames = names(featureData)[-1]
reducedFeatureData = read.csv('reducedFeatures.csv'")
reducedFeatureNames = names(reducedFeatureData)[-1]
featureTimes = read.csv("featureTimes.csv'")
satisfiable = read.csv("satisfiable.csv'")
presolvelLimit = 1
presolver = "minisat"
featureTimeLimit = 5
toSolve = (performanceData[presolver] > presolvelLimit) &
(featureTimes$time < featureTimeLimit)
featureTimeTask = makeRegrTask("featureTime",
target = "time", data = cbind(featureTimes,
subset (reducedFeatureData, T, reducedFeatureNames)))
featureTimeModel = train(makeLearner('regr.lm"),
task = featureTimeTask)
satisfiableTask = makeClassifTask("satisfiable",
target = "satisfiable", data = cbind(satisfiable,
subset(featureData, T, featureNames)))
satisfiableModel = train(makeLearner('classif.J48"),
task = satisfiableTask)
satisfiableData = input(featureData, subset(performanceData,
satisfiable$satisfiable & toSolve))
unsatisfiableData = input(featureData, subset(performanceData,
(!satisfiable$satisfiable) & toSolve))
satisfiableFolds = cvFolds(satisfiableData)
unsatisfiableFolds = cvFolds(unsatisfiableData)
satisfiableModel = classifyPairs(makeLearner('classif.randomForest"),
satisfiableFolds)
unsatisfiableModel = classifyPairs(makeLearner('classif.randomForest"),
unsatisfiableFolds)

Let’s walk through it step by step. First, we read all the relevant data, as in
the individual steps above. Then we set our time limits and the presolver. The
data we want to train algorithm selection models for comprises the instances
that are not solved by the presolver and for which the feature prediction time
is not too long. We save the Boolean mask that encodes these conditions in
toSolve to be able to filter the data later.

After that, we train our first two models — one to predict the feature com-

36

putation time and the other to predict whether an instance is satisfiable or not.
For the feature computation time, we need to consider all the data, whereas for
the prediction of satisfiability we only need the instances that we want algorithm
selection models for.

Then, we partition the data based on satisfiability and pass them to input,
filtering the instances that we do not require algorithm selection for. Finally,
we proceed in the usual LLAMA manner by partitioning the data into folds and
learning a SATzilla 2012-style pairwise classification model.

To make predictions on new data, we would use the two preliminary models
to determine feature computation time and satisfiability and then the predictor
member of either the satisfiableModel or the unsatisfiablelModel.

Our SATzilla-style solver now looks something like this.

myPortfolioSolver = function(instance) {
presolver = "minisat"
presolveTimeout = 1
backupsolver = "clasp"
featureTimeout = 5
result = runSolver(instance, presolver, timeout = presolveTimeout)
if (!isSolved(result)) {
simpleFeatures = getSimpleFeatures(instance)
featureTime = predict(featureTimeMode,
newdata = simpleFeatures)$data$response
if ((featureTime > featureTimeLimit)) {
return(runSolver(instance, backupsolver))
} else {
features = getFeatures(instance)
satisfiable = predict(satisfiableModel,
newdata = features)$data$response
if (satisfiable) {
solver = satisfiableModel$predictor(features)
} else {
solver = unsatisfiableModel$predictor(features)
}

return(runSolver (instance, solver))

}
} else {

return(result)
}

7 The further domestication of LLAMA

The functionality currently implemented in LLAMA facilitates the exploration
of the performance of many different approaches to algorithm selection. It is

37

our intention for LLAMA to develop into a platform that not only facilitates
the exploration and comparison of different existing approaches, but also the
rapid prototyping of new approaches. The functions it provides take care of
the infrastructure required to train and evaluate machine learning models in a
scientifically rigorous way. Researchers wishing to improve algorithm portfolio
selection do not need to concern themselves with the infrastructure, but can
concentrate on the actual research.

LLAMA is maturing rapidly and has a comprehensive test suite. Neverthe-
less, the responsibility of interpreting and validating the results lies with the
user.

It has an issue tracker at https://bitbucket.org/lkotthoff/11ama/issues
for bug reports and feature requests.

Acknowledgements

This work was supported by EU FP7 ICT-FET grant 284715 (ICON) and an
IRC “New Foundations” grant. The drawing of a Llama is courtesy of http:
//www.bluebison.net/. We wish to thank all the people who contributed to
LLAMA.

References

[1] Bernd Bischl, Michel Lang, Jakob Richter, Jakob Bossek, Leonard Judt,
Tobias Kuehn, Erich Studerus, and Lars Kotthoff. mir: Machine Learning
in R., 2014. R package version 2.2.

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2007.

[3] Michael J. Crawley. The R Book. Wiley Publishing, 1st edition, 2007.

[4] Thomas G. Dietterich. Ensemble methods in machine learning. In Inter-
national Workshop on Multiple Classifier Systems, pages 1-15, 2000.

[6] Tan P. Gent, Christopher A. Jefferson, Lars Kotthoff, Tan Miguel, Neil
Moore, Peter Nightingale, and Karen E. Petrie. Learning when to use lazy
learning in constraint solving. In 19th European Conference on Artificial
Intelligence, pages 873-878, August 2010.

[6] Carla P. Gomes and Bart Selman. Algorithm portfolios. Artificial Intelli-
gence, 126(1-2):43-62, 2001.

[7] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Re-
utemann, and Tan H. Witten. The WEKA data mining software: An up-
date. SIGKDD Ezxplor. Newsl., 11(1):10-18, November 2009.

[8] Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg. An economics
approach to hard computational problems. Science, 275(5296):51-54, 1997.

38

[9]

[10]

[12]

[13]

[14]

Barry Hurley, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan. Proteus:
A hierarchical portfolio of solvers and transformations. In CPAIOR, May
2014.

Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and
Meinolf Sellmann. Algorithm selection and scheduling. In 17th Interna-
tional Conference on Principles and Practice of Constraint Programming,
pages 454-469, 2011.

Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney.
ISAC instance-specific algorithm configuration. In Proceeding of the 2010
conference on ECAI 2010: 19th European Conference on Artificial Intel-
ligence, pages 751-756, Amsterdam, The Netherlands, The Netherlands,
2010. IOS Press.

Ron Kohavi. A study of cross-validation and bootstrap for accuracy estim-
ation and model selection. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, pages 1137-1143. Morgan Kaufmann,
1995.

Lars Kotthoff. Algorithm selection for combinatorial search problems: A
survey. Technical Report arXiv:1210.7959, University College Cork, 2012.

Lars Kotthoff. Hybrid regression-classification models for algorithm selec-
tion. In 20th European Conference on Artificial Intelligence, pages 480-485,
August 2012.

Lars Kotthoff. Algorithm selection for combinatorial search problems: A
survey. Al Magazine, 2014. Forthcoming.

Lars Kotthoff, ITan P. Gent, and Ian Miguel. An evaluation of machine
learning in algorithm selection for search problems. AI Communications,
25(3):257-270, 2012.

Brett Lantz. Machine Learning with R. Packt, 2013.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1 edition, January 1993.

Talal Rahwan and Tomasz P. Michalak. A game theoretic approach to
measure contributions in algorithm portfolios. Technical Report RR-13-11,
DCS, 2013.

John R. Rice. The algorithm selection problem. Advances in Computers,
15:65-118, 1976.

Josef Schmee and Gerald J. Hahn. A simple method for regression analysis
with censored data. Technometrics, 21(4):417-432, 1979.

Tan H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann, 2011.

39

[23]

[24]

[25]

[26]

David H. Wolpert. Stacked generalization. Neural Networks, 5:241-259,
1992.

David H. Wolpert and William G. Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1(1):67—
82, 1997.

Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Hierarchical hardness
models for SAT. In CP, pages 696-711, 2007.

Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Hydra: Automatically
configuring algorithms for portfolio-based selection. In Twenty-Fourth Con-
ference of the Association for the Advancement of Artificial Intelligence,
pages 210-216, 2010.

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla:
portfolio-based algorithm selection for SAT. J. Artif. Intell. Res., 32:565—
606, 2008.

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Hydra-
MIP: automated algorithm configuration and selection for mixed integer
programming. In RCRA Workshop on FExperimental Evaluation of Al-
gorithms for Solving Problems with Combinatorial Explosion, pages 16-30,
2011.

40

