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Enrollment and event prediction R shiny app manual 
 

1 Introduc�on 
The R Shiny applica�on developed in this study provides a reliable and flexible tool for predic�ng 
enrollment and events in clinical trials. The applica�on can be u�lized at different stages of a clinical trial, 
including the design stage, real-�me before enrollment comple�on, and real-�me a�er enrollment 
comple�on. 

The app's versa�lity is due to its ability to accommodate various enrollment and event models. These 
models' assump�ons are clearly outlined to ensure the app's predic�ons are accurate and reliable. 

Users must provide relevant study data as input to the applica�on, and it provides predic�ons as output.  

2 Enrollment models 
In this study, we adopt a Poisson enrollment process to model the number of subjects enrolled in a 
clinical trial over different �me periods. This process assumes that the number of subjects enrolled 
during each period is sta�s�cally independent. 

We use the func�on 𝑎𝑎(𝑡𝑡) to represent the enrollment rate on day 𝑡𝑡 since the start of the trial. The 
number of subjects enrolled between day 𝑡𝑡0 and day 𝑡𝑡1 follows a Poisson distribu�on with mean  

𝜇𝜇(𝑡𝑡1)− 𝜇𝜇(𝑡𝑡0) = � 𝑎𝑎(𝑢𝑢)
𝑡𝑡1

𝑡𝑡0
𝑑𝑑𝑑𝑑 

where 𝜇𝜇(𝑡𝑡) is the integral of 𝑎𝑎(𝑢𝑢) from 0 to 𝑡𝑡. 

Different enrollment models assume different func�onal forms for 𝑎𝑎(𝑡𝑡) and 𝜇𝜇(𝑡𝑡). By selec�ng an 
appropriate enrollment model, we can es�mate the enrollment rate and predict the number of subjects 
likely to be enrolled at different stages of the trial. 

2.1 The Poisson enrollment model 
The homogeneous Poisson enrollment model assumes a constant enrollment rate, i.e., 𝑎𝑎(𝑡𝑡) ≡ 𝜇𝜇. The 
mean number of subjects enrolled by �me 𝑡𝑡 is given by 𝜇𝜇(𝑡𝑡) = 𝜇𝜇𝜇𝜇. 

2.2 The �me-decay enrollment model 
The �me-decay enrollment model assumes that  𝑎𝑎(𝑡𝑡) = 𝜇𝜇

𝛿𝛿
�1 − 𝑒𝑒−𝛿𝛿𝛿𝛿�, where 𝜇𝜇 is the base rate 

parameter and 𝛿𝛿 is the decay rate parameter. The enrollment rate begins at 𝑎𝑎(0) = 0 and increases to a 
steady state value of 𝑎𝑎(∞) = 𝜇𝜇/𝛿𝛿 as 𝑡𝑡 approaches infinity. The mean number of subjects enrolled by 

�me 𝑡𝑡 is given by 𝜇𝜇(𝑡𝑡) = 𝜇𝜇
𝛿𝛿
�𝑡𝑡 − 1

𝛿𝛿
�1 − 𝑒𝑒−𝛿𝛿𝛿𝛿��. 

2.3 The B-spline enrollment model 
The B-spline enrollment model is proposed to address the limita�ons of the �me-decay enrollment 
model, par�cularly in capturing complex enrollment paterns where the rate of enrollment ini�ally 
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increases and then decreases. The B-spline func�on is employed to model the log enrollment rates to 
maintain the posi�vity of the enrollment rate. The B-spline model requires users to specify the number 
of inner knots and the number of days used for averaging enrollment rates before the last enrollment 
date (lag days) to make predic�ons. The applica�on of log transforma�on and lag days are introduced to 
enhance the B-spline enrollment model proposed by Zhang and Long (2010). 

The B-spline enrollment model can only be used a�er the trial has started and the enrollment is ongoing. 
It cannot be used at the design stage. 

2.4 The piecewise Poisson enrollment model 
The piecewise Poisson model is a widely used enrollment model that segments the �me axis into 
mul�ple intervals, each characterized by a constant enrollment rate. Despite its lack of smoothness, the 
piecewise Poisson model is a flexible and powerful tool for specifying and analyzing enrollment trends in 
clinical trials.  

2.5 Genera�on of enrollment �mes 
Suppose that the study is in progress at �me 𝑡𝑡0, and 𝑛𝑛(𝑡𝑡0) subjects have already been enrolled, with a 
target enrollment of 𝑛𝑛 subjects. Therefore, the number of new subjects to enroll is 𝑟𝑟 = 𝑛𝑛 − 𝑛𝑛(𝑡𝑡0). The 
Poisson enrollment process assumes sta�s�cal independence of the number of enrollments in separate 
�me intervals. Let 𝑛𝑛(𝑡𝑡) represent the total number of enrolled subjects by �me 𝑡𝑡, and 𝑉𝑉(𝑖𝑖) denote the 
enrollment �me for the 𝑖𝑖th new subjects. It is evident that 

𝑃𝑃�𝑉𝑉(𝑖𝑖) > 𝑣𝑣1�𝑉𝑉(𝑖𝑖−1) = 𝑣𝑣0� = 𝑃𝑃(𝑛𝑛(𝑣𝑣1) − 𝑛𝑛(𝑣𝑣0) = 0) = exp�−𝜇𝜇(𝑣𝑣1) + 𝜇𝜇(𝑣𝑣0)� 

Using the inverse transform method, we can generate the enrollment �mes for the 𝑟𝑟 new subjects 
sequen�ally as follows:  

• Generate 𝑒𝑒1 from a standard exponen�al distribu�on, and calculate 𝑉𝑉(1) = 𝜇𝜇−1(𝜇𝜇(𝑡𝑡0) + 𝑒𝑒1). 
• For 𝑖𝑖 = 2, … , 𝑟𝑟, generate 𝑒𝑒𝑖𝑖 from a standard exponen�al distribu�on, and set 𝑉𝑉(𝑖𝑖) =

𝜇𝜇−1�𝜇𝜇�𝑉𝑉(𝑖𝑖−1)�+ 𝑒𝑒𝑖𝑖� = 𝜇𝜇−1(𝜇𝜇(𝑡𝑡0) + 𝑒𝑒1 + ⋯+ 𝑒𝑒𝑖𝑖). 

3 Event models 
Let 𝑊𝑊 denote the �me between enrollment and event for a subject. We can characterize the random 
variable 𝑊𝑊 using either the survival func�on, 𝑆𝑆(𝑡𝑡) = 𝑃𝑃(𝑊𝑊 > 𝑡𝑡), or the hazard rate func�on, 

ℎ(𝑡𝑡) = lim
Δ𝑡𝑡→0

𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡 + Δ𝑡𝑡|𝑇𝑇 > 𝑡𝑡)
Δ𝑡𝑡

  

The hazard rate func�on tells us the instantaneous rate of having the event at any given �me, given that 
the subject has not had the event before that �me.  

3.1 The exponen�al distribu�on 
The exponen�al distribu�on is the most basic �me-to-event distribu�on that assumes a constant hazard 
rate over �me, which can be denoted as ℎ(𝑡𝑡) ≡ 𝜆𝜆. The corresponding survival func�on is 𝑆𝑆(𝑡𝑡) = 𝑒𝑒−𝜆𝜆𝜆𝜆. 
For instance, if we have an event rate of 5% in one year, this can be translated to an exponen�al event 
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distribu�on with a hazard rate of 𝜆𝜆 = − log�𝑆𝑆(𝑡𝑡)�
𝑡𝑡

= − log(1−0.05)
365

= 0.00014 per day. The median of the 

exponen�al distribu�on is log(2)
𝜆𝜆

. 

3.2 The Weibull distribu�on 
The Weibull distribu�on is a more versa�le version of the exponen�al distribu�on. Unlike the 
exponen�al distribu�on, it does not assume a constant hazard rate, making it more widely applicable. 
This distribu�on is defined by two parameters, 𝜅𝜅 and 𝜆𝜆, where 𝜅𝜅 determines the shape of the 
distribu�on curve and 𝜆𝜆 determines its scaling. These parameters are referred to as the shape and scale 
parameters, respec�vely.  

The hazard func�on of the Weibull distribu�on can be expressed as  

ℎ(𝑡𝑡) =
𝜅𝜅
𝜆𝜆
�
𝑡𝑡
𝜆𝜆
�
𝜅𝜅−1

 

When 𝜅𝜅 = 1, the hazard rate remains constant over �me, which is the same as the exponen�al case. 
However, when 𝜅𝜅 > 1, the hazard rate increases as �me goes on, whereas it decreases when 𝜅𝜅 < 1.  

The survivor func�on for the Weibull distribu�on is  

𝑆𝑆(𝑡𝑡) = 𝑒𝑒−�
𝑡𝑡
𝜆𝜆�

𝜅𝜅

 

The mean of the Weibull distribu�on is 𝜆𝜆Γ �1 + 1
𝜅𝜅
� and the variance is 𝜆𝜆2 �Γ�1 + 2

𝜅𝜅
� − Γ2 �1 + 1

𝜅𝜅
��, 

where Γ(⋅) is the gamma func�on. 

3.3 The log-logis�c distribu�on 
The log-logis�c distribu�on is a probability distribu�on that models a variable whose logarithm follows a 
logis�c distribu�on, i.e., 𝑇𝑇 ∼ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜅𝜅, 𝜆𝜆) if log(𝑇𝑇) ∼ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇,𝜎𝜎), where 𝜇𝜇 = log(𝜆𝜆) ,𝜎𝜎 = 1/𝜅𝜅. Unlike 
the Weibull distribu�on, which has a monotonically increasing or decreasing hazard rate, the hazard rate 
func�on of the log-logis�c distribu�on ini�ally increases from zero to a maximum and then decreases to 
zero as �me approaches infinity. The log-logis�c distribu�on generally has heavier tails than the Weibull 
distribu�on. This means that there is a rela�vely higher probability of observing extreme values for a log-
logis�c random variable than for a Weibull random variable. The survival func�on of the log-logis�c 
distribu�on is  

𝑆𝑆(𝑡𝑡) =
1

1 + exp �log(𝑡𝑡) − 𝜇𝜇
𝜎𝜎 �

=
1

1 + �𝑡𝑡𝜆𝜆�
𝜅𝜅 

where 𝜅𝜅 = 1
𝜎𝜎

 is the shape parameter of the log-logis�c distribu�on, and 𝜆𝜆 = exp(𝜇𝜇) is the scale 
parameter of the log-logis�c distribu�on.  

The mean of the log-logis�c distribu�on exists if 𝜅𝜅 > 1 and the variance of the log-logis�c distribu�on 
exists if 𝜅𝜅 > 2.  
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3.4 The log-normal distribu�on 
The log-normal distribu�on is a probability distribu�on that models a variable whose logarithm follows a 
normal distribu�on, i.e., 𝑇𝑇 ∼ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇,𝜎𝜎2) if log(𝑇𝑇) ∼ 𝑁𝑁(𝜇𝜇,𝜎𝜎2). Unlike the Weibull distribu�on which 
has a monotonically increasing or decreasing hazard rate, the hazard rate func�on of the log-normal 
distribu�on ini�ally increases from zero to a maximum and then decreases to zero as �me approaches 
infinity. The log-normal distribu�on is similar to the log-logis�c distribu�on, with the later having 
heavier tails. The survival func�on of the log-normal distribu�on is  

𝑆𝑆(𝑡𝑡) = 1 −Φ�
log(𝑡𝑡) − 𝜇𝜇

𝜎𝜎 � 

where Φ(⋅) is the distribu�on func�on of the standard normal distribu�on.  

The mean of the log-normal distribu�on is exp �𝜇𝜇 + 1
2
𝜎𝜎2� and the variance of the log-normal 

distribu�on is (exp(𝜎𝜎2) − 1) exp(2𝜇𝜇 + 𝜎𝜎2).  

3.5 The piecewise exponen�al distribu�on 
The piecewise exponen�al distribu�on divides the �me axis into mul�ple intervals, each characterized by 
a constant hazard rate. This allows the hazard rate to change over �me and hence is more flexible than 
the exponen�al distribu�on.  

3.6 The model-averaging event distribu�on 
To perform model-averaging, we model the �me-to-event using two distribu�ons: Weibull and log-
normal. The weights for each distribu�on are determined based on the Bayesian Informa�on Criterion 
(BIC) score. This approach seeks to balance and improve the robustness of the model by combining the 
strengths of both parametric models. The survival func�on of the resul�ng averaged model takes the 
following form 

𝑆𝑆(𝑡𝑡) = 𝑤𝑤𝑊𝑊𝑊𝑊𝑆𝑆𝑊𝑊𝑊𝑊(𝑡𝑡) + 𝑤𝑤𝐿𝐿𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑡𝑡) 

where 𝑤𝑤𝑊𝑊𝑊𝑊 and 𝑤𝑤𝐿𝐿𝐿𝐿 are the weights for the Weibull and log-normal distribu�ons, respec�vely,  

𝑤𝑤𝑊𝑊𝑊𝑊 =
exp �−1

2𝐵𝐵𝐵𝐵𝐶𝐶𝑊𝑊𝑊𝑊�

exp �−1
2𝐵𝐵𝐵𝐵𝐶𝐶𝑊𝑊𝑊𝑊�+ exp �−1

2𝐵𝐵𝐵𝐵𝐶𝐶𝐿𝐿𝐿𝐿�
 

𝑤𝑤𝐿𝐿𝐿𝐿 = 1 −𝑤𝑤𝑊𝑊𝑊𝑊, and 𝐵𝐵𝐵𝐵𝐶𝐶𝑊𝑊𝑊𝑊 and 𝐵𝐵𝐵𝐵𝐶𝐶𝐿𝐿𝐿𝐿 are the BIC scores for the respec�ve models.  

BIC is a sta�s�cal measure used for model selec�on among a set of candidate models. It is a criterion for 
model selec�on that balances model fit against model complexity. Among compe�ng models, the one 
that achieves the lowest BIC value is typically preferred as it indicates a beter balance between model 
complexity and goodness of fit.  

We u�lize a weighted BIC to evaluate the performance of the averaged model. Specifically, we calculate 
the weighted BIC as 𝑤𝑤𝑊𝑊𝑊𝑊𝐵𝐵𝐵𝐵𝐶𝐶𝑊𝑊𝑊𝑊 + 𝑤𝑤𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐶𝐶𝐿𝐿𝐿𝐿.  
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3.7 The spline event model 
In the spline event model developed by Royston and Parmar (2002), a transformed survival func�on, 
𝑔𝑔�𝑆𝑆(𝑡𝑡)�, is modelled as a natural cubic spline func�on of log �me 𝑥𝑥 = log (𝑡𝑡), 

𝑔𝑔�𝑆𝑆(𝑡𝑡)� = 𝑠𝑠(𝑥𝑥, 𝛾𝛾) 

In the propor�onal hazards model (scale = "hazard"), 𝑔𝑔�𝑆𝑆(𝑡𝑡)� = log�− log�𝑆𝑆(𝑡𝑡)��.  

In the propor�onal odds model (scale = "odds"), 𝑔𝑔�𝑆𝑆(𝑡𝑡)� = log � 1
𝑆𝑆(𝑡𝑡) − 1�.  

In the probit model (scale = "normal"), 𝑔𝑔�𝑆𝑆(𝑡𝑡)� = −Φ−1�𝑆𝑆(𝑡𝑡)�.  

The natural cubic spline is constrained to be linear beyond boundary knots, 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚, and is 
defined as  

𝑠𝑠(𝑥𝑥, 𝛾𝛾) = 𝛾𝛾0 + 𝛾𝛾1𝑥𝑥 +  𝛾𝛾2𝑣𝑣1(𝑥𝑥) + ⋯+ 𝛾𝛾𝑚𝑚+1𝑣𝑣𝑚𝑚(𝑥𝑥) 

where 𝑣𝑣𝑗𝑗(𝑥𝑥) represents the 𝑗𝑗th basis func�on: 

𝑣𝑣𝑗𝑗(𝑥𝑥) = �𝑥𝑥 − 𝑘𝑘𝑗𝑗�+
3 − 𝜆𝜆𝑗𝑗(𝑥𝑥 − 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚)+3 − �1 − 𝜆𝜆𝑗𝑗�(𝑥𝑥 − 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚)+3  

Here, 𝑘𝑘𝑗𝑗 is the 𝑗𝑗th inner knot, 𝜆𝜆𝑗𝑗 = 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚−𝑘𝑘𝑗𝑗
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚−𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

, for 𝑗𝑗 = 1, … ,𝑚𝑚. The knots are chosen as equally spaced 

quan�les of the log uncensored survival �mes. The boundary knots are chosen as the minimum and 
maximum log uncensored survival �mes. In addi�on, 𝑥𝑥+ denotes the posi�ve part of 𝑥𝑥.  

With no knots (𝑚𝑚 = 0), the spline reduces to a linear func�on, and these models are equivalent to 
Weibull, log-logis�c and lognormal models, respec�vely. As noted in Royston and Parmar (2002), 
experience suggests that a worthwhile improvement in fit over a straight-line model is o�en obtained by 
using a spline model with a single internal knot, but o�en litle is gained by adding further knots. 

3.8 The Cox model 
We use the Efron likelihood to es�mate the regression coefficients and the Fleming-Harrington method 
to es�mate the baseline hazards for the Cox model. Of note, informa�on criteria based on the par�al 
likelihood func�on and the number of regression coefficients of the Cox model do not allow for a fair 
comparison with parametric regression models for survival data because the par�al likelihood does not 
account for the es�ma�on of baseline hazards.  

To enable a fair comparison, we connect the Cox model to the piecewise exponen�al regression model 
by construc�ng the full log likelihood as the sum of the log par�al likelihood and a constant term, 
∑ 𝑑𝑑𝑗𝑗�log�𝑑𝑑𝑗𝑗� − 1�𝐽𝐽
𝑗𝑗=1 , and including both the baseline hazards and the regression coefficients as model 

parameters. Here we assume there are a total of 𝐽𝐽 dis�nct event �mes, 𝑡𝑡1 < ⋯ < 𝑡𝑡𝐽𝐽, and 𝑑𝑑𝑗𝑗 = 𝑑𝑑�𝑡𝑡𝑗𝑗� is 
the total number of observed events at the 𝑗𝑗th event �me 𝑡𝑡𝑗𝑗.  

Let  

𝜔𝜔𝑗𝑗 = �
1

𝑆𝑆(0)�𝛽𝛽, 𝑘𝑘, 𝑡𝑡𝑗𝑗�

𝑑𝑑(𝑡𝑡𝑗𝑗)

𝑘𝑘=1
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denote the incremental hazard in the 𝑗𝑗th event �me interval, 𝐼𝐼𝑗𝑗 = (𝑡𝑡𝑗𝑗−1, 𝑡𝑡𝑗𝑗], 𝜆𝜆𝑗𝑗 = 𝜔𝜔𝑗𝑗

𝑡𝑡𝑗𝑗−𝑡𝑡𝑗𝑗−1
 denote the 

hazard rate in 𝐼𝐼𝑗𝑗, and 𝛼𝛼𝑗𝑗 = log�𝜆𝜆𝑗𝑗� for 𝑗𝑗 = 1, … , 𝐽𝐽 denote the parameters for the baseline hazard 
func�on. Here  

𝑆𝑆(𝑟𝑟)(𝛽𝛽,𝑘𝑘, 𝑡𝑡) = �𝑌𝑌𝑖𝑖(𝑡𝑡) �1 −
𝑘𝑘 − 1
𝑑𝑑(𝑡𝑡)

Δ𝑖𝑖(𝑡𝑡)� 𝑒𝑒𝛽𝛽
𝑇𝑇𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖

⊗𝑟𝑟
𝑛𝑛

𝑖𝑖=1

, 𝑟𝑟 = 0,1,2, 

where 𝑌𝑌𝑖𝑖(𝑡𝑡) = 𝐼𝐼(𝑇𝑇𝑖𝑖 ≥ 𝑡𝑡) is the at-risk indicator for subject 𝑖𝑖, Δ𝑖𝑖(𝑡𝑡) = Δ𝑖𝑖𝐼𝐼(𝑇𝑇𝑖𝑖 = 𝑡𝑡) indicates whether 
subject 𝑖𝑖 had an event at �me 𝑡𝑡. Furthermore, let  

𝑧𝑧̅(𝛽𝛽,𝑘𝑘, 𝑡𝑡) =
𝑆𝑆(1)(𝛽𝛽,𝑘𝑘, 𝑡𝑡)
𝑆𝑆(0)(𝛽𝛽,𝑘𝑘, 𝑡𝑡)

, 

𝐸𝐸𝑗𝑗(𝛽𝛽) =
∑ 1

𝑆𝑆(0)�𝛽𝛽,𝑘𝑘, 𝑡𝑡𝑗𝑗�
𝑧𝑧̅�𝛽𝛽,𝑘𝑘, 𝑡𝑡𝑗𝑗�

𝑑𝑑�𝑡𝑡𝑗𝑗�
𝑘𝑘=1

∑ 1
𝑆𝑆(0)�𝛽𝛽,𝑘𝑘, 𝑡𝑡𝑗𝑗�

𝑑𝑑�𝑡𝑡𝑗𝑗�
𝑘𝑘=1

. 

Then it can be shown that  

𝑉𝑉𝑎𝑎𝑎𝑎�𝛼𝛼�𝑗𝑗� =

∑ 1
�𝑆𝑆(0)�𝛽𝛽, 𝑘𝑘, 𝑡𝑡𝑗𝑗��

2
𝑑𝑑�𝑡𝑡𝑗𝑗�
𝑘𝑘=1

�∑ 1
𝑆𝑆(0)�𝛽𝛽, 𝑘𝑘, 𝑡𝑡𝑗𝑗�

𝑑𝑑�𝑡𝑡𝑗𝑗�
𝑘𝑘=1 �

2 + 𝐸𝐸𝑗𝑗�𝛽̂𝛽�
𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉�𝛽̂𝛽�𝐸𝐸𝑗𝑗�𝛽̂𝛽�, 

𝐶𝐶𝐶𝐶𝐶𝐶�𝛼𝛼�𝑗𝑗,𝛼𝛼�𝑘𝑘� = 𝐸𝐸𝑗𝑗�𝛽̂𝛽�
𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉�𝛽̂𝛽�𝐸𝐸𝑘𝑘�𝛽̂𝛽�, 𝑗𝑗 ≠ 𝑘𝑘, 

and  

𝐶𝐶𝐶𝐶𝐶𝐶�𝛼𝛼�𝑗𝑗, 𝛽̂𝛽� = −𝐸𝐸𝑗𝑗�𝛽̂𝛽�
𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉�𝛽̂𝛽�. 

These expressions can be used to draw 𝜃𝜃 = (𝛼𝛼𝑇𝑇 ,𝛽𝛽𝑇𝑇)𝑇𝑇 from the approximate mul�variate normal 

posterior distribu�on, 𝑁𝑁 �𝜃𝜃�,𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃���. 

To extrapolate the survival curve beyond the last observed event �me point, we take a weighted average 
of hazard rates during the last 𝑚𝑚 event �me intervals:  

𝜆𝜆𝐽𝐽+1 = � 𝑤𝑤𝑗𝑗𝜆𝜆𝑗𝑗

𝐽𝐽

𝑗𝑗=𝐽𝐽−𝑚𝑚+1

, 𝑤𝑤𝑗𝑗 =
𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑗𝑗−1
𝑡𝑡𝐽𝐽 − 𝑡𝑡𝐽𝐽−𝑚𝑚

. 

Specifically, a�er we have draw 𝛼𝛼 = �𝛼𝛼1, … ,𝛼𝛼𝐽𝐽�
𝑇𝑇

 from the posterior distribu�on, let 𝜆𝜆𝑗𝑗 = 𝑒𝑒𝛼𝛼𝑗𝑗, and 
𝜆𝜆𝐽𝐽+1 = ∑ 𝑤𝑤𝑗𝑗𝜆𝜆𝑗𝑗

𝐽𝐽
𝑗𝑗=𝐽𝐽−𝑚𝑚+1 . Finally, let 𝛼𝛼𝐽𝐽+1 = log�𝜆𝜆𝐽𝐽+1�, and we approximate the survival func�on for the 

Cox model with that for a piecewise exponen�al regression model with parameters �𝛼𝛼1, … ,𝛼𝛼𝐽𝐽+1,𝛽𝛽𝑇𝑇�𝑇𝑇, 
and with the le� endpoints of the event �me intervals given by �0, 𝑡𝑡1, … , 𝑡𝑡𝐽𝐽�.  
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3.9 Genera�on of event �mes 
Assuming a data cutoff �me of 𝑡𝑡0 for the study, we can generate the underlying event �me, 𝑊𝑊𝑖𝑖, for an 
ongoing subject 𝑖𝑖. We know that the enrollment �me 𝑈𝑈𝑖𝑖 ≤ 𝑡𝑡0, and that 𝑊𝑊𝑖𝑖 > 𝑡𝑡0 − 𝑈𝑈𝑖𝑖. We use the 
inverse transform method to generate 𝑊𝑊𝑖𝑖 by se�ng the condi�onal probability  

𝑃𝑃(𝑊𝑊𝑖𝑖 > 𝑡𝑡|𝑊𝑊𝑖𝑖 > 𝑡𝑡0 − 𝑈𝑈𝑖𝑖 ,𝑈𝑈𝑖𝑖) =
𝑆𝑆(𝑡𝑡)

𝑆𝑆(𝑡𝑡0 − 𝑈𝑈𝑖𝑖)
 

equal to a uniform random variable 𝑝𝑝𝑖𝑖, so that  

𝑊𝑊𝑖𝑖 = 𝑆𝑆−1(𝑆𝑆(𝑡𝑡0 − 𝑈𝑈𝑖𝑖)𝑝𝑝𝑖𝑖) 

For instance, for the Weibull distribu�on with a shape parameter 𝜅𝜅 and a scale parameter 𝜆𝜆, the 
following equa�on can be used to generate 𝑊𝑊𝑖𝑖:  

𝑊𝑊𝑖𝑖 = 𝜆𝜆 ��
𝑡𝑡0 − 𝑈𝑈𝑖𝑖
𝜆𝜆

�
𝜅𝜅

+ 𝑒𝑒𝑖𝑖�
1/𝜅𝜅

 

Here 𝑒𝑒𝑖𝑖 = −log (𝑝𝑝𝑖𝑖) is a random variable generated from a standard exponen�al distribu�on.  

When dealing with the log-normal distribu�on, it is more efficient to u�lize specialized algorithms 
designed to generate random variables from truncated normal distribu�ons.  

To generate the event �me from the model averaging event model, we begin by genera�ng the 
component indicator 𝑌𝑌𝑖𝑖  from the following Bernoulli distribu�on,  

𝑌𝑌𝑖𝑖 ∼ 𝑏𝑏�1,𝑃𝑃(𝑌𝑌𝑖𝑖 = 1|𝑊𝑊𝑖𝑖 > 𝑡𝑡0 − 𝑈𝑈𝑖𝑖 ,𝑈𝑈𝑖𝑖)� 

where  

𝑃𝑃(𝑌𝑌𝑖𝑖 = 1|𝑊𝑊𝑖𝑖 > 𝑡𝑡0 − 𝑈𝑈𝑖𝑖 ,𝑈𝑈𝑖𝑖) =  
𝑊𝑊𝑊𝑊𝑊𝑊𝑆𝑆𝑊𝑊𝑊𝑊(𝑡𝑡0 − 𝑈𝑈𝑖𝑖)

𝑊𝑊𝑊𝑊𝑊𝑊𝑆𝑆𝑊𝑊𝑊𝑊(𝑡𝑡0 − 𝑈𝑈𝑖𝑖) + 𝑊𝑊𝐿𝐿𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑡𝑡0 − 𝑈𝑈𝑖𝑖)
 

If 𝑌𝑌𝑖𝑖 = 1, then we generate 𝑊𝑊𝑖𝑖 from the truncated Weibull distribu�on. If 𝑌𝑌𝑖𝑖 = 0, then we generate 𝑊𝑊𝑖𝑖 
from the truncated normal distribu�on.  

4 Dropout models 
In survival analysis, dropout can act as a compe�ng risk that may prevent the observa�on of the event of 
interest. The R shiny app models the �me to dropout using various probability models, including 
exponen�al, Weibull, log-logis�c, log-normal, piecewise exponen�al, model averaging, and spline. To 
generate the �me-to-dropout data, we use the same algorithm that is applied to generate �me-to-event 
in Sec�on 3.6. 

5 Number of events 
Bagiella and Heitjan (2001) proposed a method to calculate the cumula�ve number of events by �me 𝑡𝑡 
in a clinical trial using the following equa�on: 

𝐷𝐷(𝑡𝑡) = 𝐷𝐷(𝑡𝑡0) + 𝑄𝑄(𝑡𝑡0, 𝑡𝑡) + 𝑅𝑅(𝑡𝑡0, 𝑡𝑡) 
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where 𝐷𝐷(𝑡𝑡0) represents the number of events that have already occurred by �me 𝑡𝑡0, 𝑄𝑄(𝑡𝑡0, 𝑡𝑡) represents 
the predicted number of events between 𝑡𝑡0 and 𝑡𝑡 from ongoing subjects, and 𝑅𝑅(𝑡𝑡0, 𝑡𝑡) represents the 
predicted number of events between 𝑡𝑡0 and 𝑡𝑡 from new subjects. Here, the number of events reflects 
the observed events a�er accoun�ng for dropouts and administra�ve censoring.  

6 Input and output 
To predict enrollment and events accurately, the required input and the resul�ng output vary depending 
on the stage of the study and predic�on target.  

6.1 Design stage enrollment predic�on 
The following input must be provided: 

• The target enrollment (number of subjects) 
• The level of predic�on interval (95%, 90%, or 80%) 
• The number of years a�er study start (predic�on horizon) 
• Whether to predict by treatment 
• The number of treatment groups 
• Treatment alloca�on in a randomiza�on block 
• Treatment descrip�on 
• Whether to fix the parameter values 
• The number of simula�ons to be conducted 
• The random seed used to ini�ate the simula�ons 
• The enrollment model for the study (e.g., Poisson, �me-decay, or piecewise Poisson) and the 

corresponding model parameters. These parameters can be based on previous studies, literature 
reviews, and es�ma�ons from sites 

 
The following output will be produced: 

• Predicted �me from trial start un�l reaching the target number of subjects 
• Plots of predicted cumula�ve number of subjects enrolled over �me 

6.2 Design stage enrollment and event predic�on 
The following input must be provided: 

• The target enrollment (number of subjects) 
• The target events 
• The level of predic�on interval (95%, 90%, or 80%) 
• The number of years a�er study start (predic�on horizon) 
• What to show on predic�on plot: enrollment, event, dropout, and/or ongoing 
• Whether to predict by treatment 
• The number of treatment groups 
• Treatment alloca�on in a randomiza�on block 
• Treatment descrip�on 
• Whether to fix the parameter values 
• The number of simula�ons to be conducted 
• The random seed used to ini�ate the simula�ons 
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• The enrollment model for the study (e.g., Poisson, �me-decay, or piecewise Poisson) and the 
corresponding model parameters. These parameters can be based on previous studies, literature 
reviews, and es�ma�ons from sites 

• The event model for the study (e.g., exponen�al, Weibull, log-logis�c, log-normal, or piecewise 
exponen�al) and the corresponding parameter values by treatment. These parameter values can 
also be based on previous studies and literature reviews 

• The dropout model for the study (e.g., none, exponen�al, Weibull, log-logis�c, log-normal, or 
piecewise exponen�al) and the corresponding parameter values by treatment. These parameter 
values can also be based on previous studies and literature reviews 

The following output will be produced:  

• Predicted �me from trial start un�l reaching the target number of subjects 
• Predicted �me from trial start un�l reaching the target number of events 
• Plots of predicted cumula�ve number of subjects enrolled and cumula�ve number of events 

over �me 

6.3 Enrollment phase enrollment predic�on 
The following input must be provided: 

• The target enrollment (number of subjects) 
• The subject level data set, which must include the following variables:  

o trialsdt: the trial start date 
o cutoffdt: the data cutoff date for analysis 
o usubjid: unique subject iden�fier 
o randdt: the randomiza�on date (or the enrollment date for a non-randomized study) for 

the subject 

For predic�on by treatment, the subject level data set should also include 
o treatment: treatment arm coded as 1, 2, and so on for the subject  
o treatment_descrip�on: treatment label corresponding to the numeric treatment code 

• The level of predic�on interval (95%, 90%, or 80%) 
• The number of years a�er data cutoff (predic�on horizon) 
• Whether to predict by treatment 
• The number of treatment groups required for predic�on by treatment 
• Treatment alloca�on in a randomiza�on block required for predic�on by treatment 
• Whether to fix the parameter values 
• The number of simula�ons to be conducted 
• The random seed used to ini�ate the simula�ons 
• The enrollment model for the study (e.g., Poisson, �me-decay, B-spline, or piecewise Poisson) 

The following output will be produced:  

• Summary of observed data in terms of trial start date, trial cutoff date, days since trial start, and 
the current number of subjects 

• Plot of the observed cumula�ve number of subjects enrolled  
• Plot of the daily enrollment rate with loess smoothing 
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• Plot depic�ng the enrollment model fit 
• Predicted �me from cutoff un�l reaching the target number of subjects 
• Plots of observed and predicted cumula�ve number of subjects enrolled over �me 

6.4 Enrollment phase enrollment and event predic�on 
The following input must be provided: 

• The target enrollment (number of subjects) 
• The target events 
• The subject level data set, which must include the following variables:  

o trialsdt: the trial start date 
o cutoffdt: the data cutoff date for analysis 
o usubjid: unique subject iden�fier 
o randdt: the randomiza�on date (or the enrollment date for a non-randomized study) for 

the subject 
o �me: days from enrollment to the event of interest or data cutoff, whichever comes first, 

for the subject 
o event: the event indicator for the subject, which takes the value 1 if the subject had the 

event of interest before the data cutoff date, and 0 otherwise 
o dropout: the indicator of compe�ng risks to the event of interest for the subject, which 

takes the value 1 if the subject dropped out before having the event of interest, and 0 
otherwise 

For predic�on by treatment, the subject level data set should also include 
o treatment: treatment arm coded as 1, 2, and so on for the subject  
o treatment_descrip�on: treatment label corresponding to the numeric treatment code 

• The level of predic�on interval (95%, 90%, or 80%) 
• The number of years a�er data cutoff (predic�on horizon) 
• What to show on predic�on plot: enrollment, event, dropout, and/or ongoing 
• Whether to predict by treatment 
• The number of treatment groups required for predic�on by treatment 
• Treatment alloca�on in a randomiza�on block required for predic�on by treatment 
• Whether to fix the parameter values 
• The number of simula�ons to be conducted 
• The random seed used to ini�ate the simula�ons 
• The enrollment model for the study (e.g., Poisson, �me-decay, B-spline, or piecewise Poisson) 
• The event model for the study (e.g., exponen�al, Weibull, log-logis�c, log-normal, piecewise 

exponen�al, model averaging, or spline) 
• The dropout model for the study (e.g., none, exponen�al, Weibull, log-logis�c, log-normal, 

piecewise exponen�al, model averaging, or spline) 

The following output will be produced:  

• Summary of observed data in terms of the trial start date, cutoff date, days since trial start, the 
current number of subjects, events, dropouts, and ongoing subjects 

• Plot of the observed cumula�ve number of subjects enrolled and cumula�ve number of events 
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• Plot of the daily enrollment rate with loess smoothing 
• Kaplan-Meier plot for �me to event 
• Kaplan-Meier plot for �me to dropout 
• Plot depic�ng the enrollment model fit 
• Plot depic�ng the event model fit 
• Plot depic�ng the dropout model fit 
• Predicted �me from cutoff un�l reaching the target number of subjects 
• Predicted �me from cutoff un�l reaching the target number of events 
• Plots of observed and predicted cumula�ve number of subjects enrolled and cumula�ve number 

of events over �me 

6.5 Follow-up phase event predic�on 
The following input must be provided: 

• The target events 
• The subject level data set, which must include the following variables:  

o trialsdt: the trial start date 
o cutoffdt: the data cutoff date for analysis 
o usubjid: unique subject iden�fier 
o randdt: the randomiza�on date (or the enrollment date for a non-randomized study) for 

the subject 
o �me: days from enrollment to the event of interest or data cutoff, whichever comes first, 

for the subject 
o event: the event indicator for the subject, which takes the value 1 if the subject had the 

event of interest before the data cutoff date, and 0 otherwise 
o dropout: the indicator of compe�ng risks to the event of interest for the subject, which 

takes the value 1 if the subject dropped out before having the event of interest, and 0 
otherwise 

For predic�on by treatment, the subject level data set should also include 
o treatment: treatment arm coded as 1, 2, and so on for the subject  
o treatment_descrip�on: treatment label corresponding to the numeric treatment code 

• The level of predic�on interval (95%, 90%, or 80%) 
• The number of years a�er data cutoff (predic�on horizon) 
• What to show on predic�on plot: enrollment, event, dropout, and/or ongoing 
• Whether to predict by treatment 
• Whether to fix the parameter values 
• The number of simula�ons to be conducted 
• The random seed used to ini�ate the simula�ons 
• The event model for the study (e.g., exponen�al, Weibull, log-logis�c, log-normal, piecewise 

exponen�al, model averaging, or spline) 
• The dropout model for the study (e.g., none, exponen�al, Weibull, log-logis�c, log-normal, 

piecewise exponen�al, model averaging, or spline) 

The following output will be produced:  
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• Summary of observed data in terms of the trial start date, data cutoff date, days since trial start, 
the current number of subjects, events, dropouts, and ongoing subjects 

• Plot of the observed cumula�ve number of subjects enrolled and cumula�ve number of events 
• Kaplan-Meier plot for �me to event 
• Kaplan-Meier plot for �me to dropout 
• Plot depic�ng the event model fit 
• Plot depic�ng the dropout model fit 
• Predicted �me from cutoff un�l reaching the target number of events 
• Plots of observed and predicted cumula�ve number of subjects enrolled and cumula�ve number 

of events over �me 

Both summary data and subject data are available for download. Except for the input data set, the user 
inputs can be saved and reused later.  
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