Leveraging Experiment Lines to Data Analytics


[Up] [Top]

Documentation for package ‘daltoolbox’ version 1.1.747

Help Pages

A B C D E F I K M O P R S T Z misc

-- A --

action Action
action.dal_transform Action implementation for transform
adjust_class_label Adjust categorical mapping
adjust_data.frame Adjust to data frame
adjust_factor Adjust factors
adjust_matrix Adjust to matrix
adjust_ts_data Adjust 'ts_data'
autoenc_adv_e Adversarial Autoencoder - Encode
autoenc_adv_ed Adversarial Autoencoder - Encode
autoenc_conv_e Convolutional Autoencoder - Encode
autoenc_conv_ed Convolutional Autoencoder - Encode
autoenc_denoise_e Denoising Autoencoder - Encode
autoenc_denoise_ed Denoising Autoencoder - Encode
autoenc_e Autoencoder - Encode
autoenc_ed Autoencoder - Encode-decode
autoenc_lstm_e LSTM Autoencoder - Encode
autoenc_lstm_ed LSTM Autoencoder - Decode
autoenc_stacked_e Stacked Autoencoder - Encode
autoenc_stacked_ed Stacked Autoencoder - Encode
autoenc_variational_e Variational Autoencoder - Encode
autoenc_variational_ed Variational Autoencoder - Encode

-- B --

Boston Boston Housing Data (Regression)

-- C --

categ_mapping Categorical mapping
classification classification
cla_dtree Decision Tree for classification
cla_knn K Nearest Neighbor Classification
cla_majority Majority Classification
cla_mlp MLP for classification
cla_nb Naive Bayes Classifier
cla_rf Random Forest for classification
cla_svm SVM for classification
cla_tune Classification Tune
cluster Cluster
clusterer Clusterer
cluster_dbscan DBSCAN
cluster_kmeans k-means
cluster_pam PAM
clu_tune Clustering Tune

-- D --

dal_base Class dal_base
dal_learner DAL Learner
dal_transform DAL Transform
dal_tune DAL Tune
data_sample Data Sample
do_fit Fit Time Series Model
do_predict Predict Time Series Model
dt_pca PCA

-- E --

evaluate Evaluate

-- F --

fit Fit
fit.cla_tune tune hyperparameters of ml model
fit.cluster_dbscan fit dbscan model
fit_curvature_max maximum curvature analysis
fit_curvature_min minimum curvature analysis

-- I --

inverse_transform Inverse Transform

-- K --

k_fold K-fold sampling

-- M --

minmax Min-max normalization
MSE.ts MSE

-- O --

outliers Outliers

-- P --

plot_bar Plot bar graph
plot_boxplot Plot boxplot
plot_boxplot_class Boxplot per class
plot_density Plot density
plot_density_class Plot density per class
plot_groupedbar Plot grouped bar
plot_hist Plot histogram
plot_lollipop Plot lollipop
plot_pieplot Plot pie
plot_points Plot points
plot_radar Plot radar
plot_scatter Scatter graph
plot_series Plot series
plot_stackedbar Plot stacked bar
plot_ts Plot time series chart
plot_ts_pred Plot a time series chart with predictions
predictor DAL Predict

-- R --

R2.ts R2
regression Regression
reg_dtree Decision Tree for regression
reg_knn knn regression
reg_mlp MLP for regression
reg_rf Random Forest for regression
reg_svm SVM for regression
reg_tune Regression Tune

-- S --

sample_random Sample Random
sample_stratified Stratified Random Sampling
select_hyper Selection hyper parameters
select_hyper.cla_tune selection of hyperparameters
select_hyper.ts_tune Select Optimal Hyperparameters for Time Series Models
set_params Assign parameters
set_params.default Default Assign parameters
sin_data Time series example dataset
sMAPE.ts sMAPE
smoothing Smoothing
smoothing_cluster Smoothing by cluster
smoothing_freq Smoothing by Freq
smoothing_inter Smoothing by interval

-- T --

train_test Train-Test Partition
train_test_from_folds k-fold training and test partition object
transform Transform
ts_arima ARIMA
ts_conv1d Conv1D
ts_data ts_data
ts_elm ELM
ts_head Extract the First Observations from a 'ts_data' Object
ts_knn KNN time series prediction
ts_lstm LSTM
ts_mlp MLP
ts_norm_an Time Series Adaptive Normalization
ts_norm_diff Time Series Diff
ts_norm_ean Time Series Adaptive Normalization (Exponential Moving Average - EMA)
ts_norm_gminmax Time Series Global Min-Max
ts_norm_swminmax Time Series Sliding Window Min-Max
ts_projection Time Series Projection
ts_reg TSReg
ts_regsw TSRegSW
ts_rf Random Forest
ts_sample Time Series Sample
ts_svm SVM
ts_tune Time Series Tune

-- Z --

zscore Z-score normalization

-- misc --

[.ts_data Subset Extraction for Time Series Data